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The image on the front cover is a symbol of Indra’s Net of Jewels or Pearls in Huayan Buddhism, 
visualized as a dewy spider’s web in which every dewdrop contains the reflection of the light emanating 
from all the other dewdrops, like nodes in a mathematical graph, and the relationships between them. 
Indra’s Net is thus a symbol of the interconnectedness of all beings in the Universe, as Consciousness, 
illustrating that none of us is ever separate from any other being for an instant, despite appearances to the 
contrary, embodied in conflict-ridden monetary economic systems. 

To present the relationships between beings in particular circumstances in as comprehensible a way as 
possible, this chapter contains 116 tables and 266 figures, many of which are grouped together in further 
tables. As this chapter is rather like one in a mathematics textbook, there are, of course, many formulae, 
for those who feel comfortable with such abstractions. Although these reveal much beauty, for me, they 
are of secondary importance in creating a coherent picture of the psychodynamics of society, explaining 
who we are and our ultimate destiny as a species. 

 
In this edition, I have also changed the subtitle of this book, which was previously To Realize Love, 

Peace, Wholeness, and the Truth. For Love, Peace, Wholeness, and the Truth are Reality, as particular 
denotations of the Ineffable Absolute. We cannot realize the Absolute—make it real. By unifying 
mysticism and mathematics, the conceptualizing mind becomes translucent, revealing the Eternal Reality 
that is ever Present, etymologically meaning ‘before being’ or ‘prior to existence’. 

Such a revelation is apocalyptic, which literally means pull a veil away from what is hidden in the 
utmost depth and breadth of the psyche. By invoking Self-reflective Intelligence, we thereby also reveal 
what Heraclitus, the mystical philosopher of change, called the Hidden Harmony, enabling us to unify all 
dualistic opposites, including self-contradictions, and thus dwell in Stillness in the Eternal Now. This is 
absolutely essential if we are to heal our existential pain at these end times we live in, in the midst of the 
sixth mass extinction of species on Earth. 

For, in conformity with the fundamental law of the Universe, which I call the paradoxical Principle of 
Unity, hope and despair are just two sides of the same coin. So, the perfect society—as the union of 
perfection and imperfection—is one where everyone awarely lives in harmony with Cosmic Law, rejected 
by axiomatic, deductive mathematics. Such denials are why Utopia is currently as far away from becoming 
manifest as it has ever been. 

 



 

 
 

Sequences, Series, and Spirals 
Introduction 
This pdf file contains Chapter 4 of my book Unifying Mysticism and Mathematics: To Reveal Love, Peace, 
Wholeness, and the Truth. This chapter, in particular, demonstrates mathematics as a generative science, 
irrepressibly emerging directly from the Absolute through the creative power of Life, in contrast to the 
traditional axiomatic, mechanistic approach. I now plan to write the final chapter of this book titled 
‘Universal Algebra’, explaining how the abstractions of pure mathematics have reached their ultimate level 
of generality in Integral Relationship Logic, the subject of Chapter 2. All being well, Chapter 5 could be 
complete by this time next year, when I shall be in my eightieth year. 

I first saw the need for this book in the early 1960s, when majoring in mathematics at university, 
having intuitively realized that what I had been taught in religion, science, economics, mathematics, and 
logic as an adolescent did not make sense as a coherent whole. However, it was not until 1980 that Life 
gave me the opportunity to understand what it truly means to be human—in contrast to the other animals 
and machines, like computers—when I had the idea that the pace of change in society is accelerating 
exponentially because of the existence of accumulative psychospiritual, mental energies. 

I initially thought that unifying these nonphysical energies with the four physical forces recognized by 
materialists would enable us to rebuild our education and economic systems on the Truth. However, as it 
has turned out, making such radical changes to the way we live our lives is far beyond the capability of the 
vast majority of the population, embodied in the political system we call ‘democracy’. Even liberal 
progressives and spiritual seekers are not following Vimala Thakar’s exhortation in Spirituality and Social 
Action: A Holistic Approach to awaken to Total Revolution, free of the hindrances of the status quo. 

Yet, with Covid-19 spreading rapidly around the world, with global heating accelerating, with the 
global economy on the brink of collapse, and with increasing racial, sexual, cultural, and ideological 
tensions, could these existential crises give us the motivation to make the necessary changes in our lives? 
These are well recognized, for, as David Brooks wrote in an opinion piece in the New York Times on 25th 
June 2020, we’ve got to have a theory of change if the USA, at least, is to face five epic crises all at once. 

For myself, all I can do at these end times we live in is to feel complete with my life’s work, having 
written a dozen books during the past ten years explaining what has been causing the fourteen billion 
years of evolution to drive itself into chaos, which we are witnessing today. As the narrative passages in 
this book indicate, the antidote is to heal our fragmented, deluded minds in Wholeness, transforming 
evolutionary divergence into all-embracing convergence at the Omega Point of evolution, as Pierre 
Teilhard de Chardin foresaw in The Human Phenomenon. 

That, in essence, is the experience that has led me to write this book. Even though it is titled Unifying 
Mysticism and Mathematics, I write very little about mysticism, as such, for the mystical experiences that 
we all share in the utmost depths of being are ineffable. So, as I use Integral Relational Logic to create a 
coherent conceptual model of mathematics, as a whole, I occasionally intersperse a few insights on what 
the hidden universal structures of mathematics look like from the Divine, Holoramic perspective of 
Wholeness. For instance, the section on ‘Spirals’ explains how sets of spirals—spaced like a Fibonacci 
sequence, resident in the Cosmic Psyche—generate the sunflowers we enjoy in our gardens. 
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The first chapters titled ‘Business Modelling’, ‘Integral Relational Logic’ and ‘From Zero to 

Transfinity’, together with the Prologue and Epilogue from January 2019, are available on my website at 
http://mysticalpragmatics.net/documents/unifying_mysticism_and_mathematics_prologue_chapters_1-
3_epilogue.pdf and ../documents/unifying_mysticism_and_mathematics-covers.pdf. 

Following the completion of Chapter 5, I shall need to make a few revisions to Chapter 3 with the 
fresh insights I have made by writing Chapters 4 and 5. The Prologue and Epilogue will also need 
updating to reflect the state of the world in eighteen months’ time as I then see it. 

From the perspective of applied mathematics, my most important book is Through Evolution’s 
Accumulation Point: Towards Its Glorious Culmination, which uses a nonlinear difference equation in 
systems theory to map the whole of evolution since the most recent big bang, explaining why scientists 
and technologists are driving the pace of scientific discovery and technological invention at unprecedented 
exponential rates of accelerating change and why society is degenerating into chaos at the present time. 

If nothing else, this book, together with my other major evolutionary book The Four Spheres: Healing 
the Split between Mysticism and Science, could help us to see our lives in perspective, abandoning the blame 
game which attributes abrupt climate change to human causes. For, when we can see the simple unifying 
patterns underlying the Universe, we see that human behaviour follows these patterns, albeit in a rather 
complicated manner, for the Cosmic Psyche, containing all knowledge, including mathematics, is the 
most complex structure that any of us has the ability to study, much hidden in the unconscious. 
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4. Sequences, Series, and Spirals 
aving seen in the previous chapter how the Divine Power of Life brings the entire number 
system into existence—from Alpha to Omega, as Zero to Transfinity—there is no better way 
of demonstrating mathematics as a generative science than through sequences, series, and 

spirals. A sequence in mathematics is an enumerated collection of objects and a series consists of partial or 
total sums of such sequences, as an ordered set of terms. As such, a sequence of sums can be further 
summed in series, a process that can be continued indefinitely. 

One fascinating aspect of sequences and series is in the way that they generate spirals in both the 
biosphere and hylosphere, as we see in asters, sea shells, and in galaxies. So, between the sections on finite 
discrete series and infinite ones, I have inserted a brief overview of this subject, especially as it concerns 
phyllotaxis, the arrangement of leaves and florets, for instance. To conclude this chapter, I include a brief 
section on the sequences underlying objects in multidimensional space, showing that, from a 
mathematical perspective, these dimensions are just an ordinary domain of values, not special in any way. 

It is important to remember here that mathematical objects do not exist in outer space. They live in 
the Cosmic Psyche, so their study is a branch of psychology. Also, to look at the way these objects grow 
holistically—in Smuts’ original meaning of holistic—reveals insights into evolutionary processes. And 
studying the structure of mathematical objects reveals patterns that demonstrate the underlying structure 
of the Universe and so are inherent to cosmology. 

Most generally, Integral Relational Logic shows that the underlying structure of the manifest Universe is 
an infinitely dimensional network of hierarchical relationships, first defined on page 60. So this chapter on 
‘Sequences, Series, and Spirals’ is a particular instance of this universal principle. We also see the pattern 
of Plato’s universals and particulars in generalized mathematical formulae and particular instances of 
them. 

Naturally, the categories of mathematical objects in this chapter are formed using the universal 
principle of concept formation in Integral Relational Logic, as a taxonomy of taxonomies. There is 
nothing mysterious or even mystical about them, as we form meaningful concepts by carefully examining 
the similar differences and different similarities in the meaningless data patterns that emerge from the 
Datum of the Universe. What we are doing in this creative process is simply studying māyā, as the 
illusory, superficial aspect of the manifest Universe; much fun. 

Finite discrete series 
A finite series of discrete terms is not an infinite series that converges to a finite limit. Rather, I mean a 
series that is the sequence of partial sums of a sequence of mostly natural, counting numbers, mainly 
monotonically increasing. 

We begin with sequences in arithmetic progression, moving on quickly to those that can be arranged 

H 
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geometrically, as figurate numbers, the most basic of which is the sequence of triangular numbers, as the 
partial sums of the positive integers. From there, we look at the most notable of the variety of other 
sequences that do not match directly with geometric space, the most significant of which is the Fibonacci 
series, evidence of which we see in forms of life in the natural environment around us, which we explore 
further in the section on spirals. 

Then we look at multinominals and how their coefficients can be arranged in Pascal’s pyramidal 
simplexes, the simplest being Pascal’s triangle, showing how triangular numbers, tetrahedral ones, and 
those in higher dimensions appear as coefficients of binomials in the binomial theorem. 

From there we review the formulae for power series, as preparation for looking at the Riemann 
function and hypothesis in the third section on infinite series. 

Finally, in this section, we look briefly at the aptly named generating functions for sequences, putting 
them into one subsection so that the relationships between them can be clearly seen. These are formulae, 
whose evaluation generates polynomials whose coefficients are amazingly the terms in the sequence. 

Arithmetic progression 
The most fundamental of numerical sequences is arithmetic progression, one in which the difference 
between consecutive terms is constant. The natural numbers are the most basic of the arithmetic 
sequences, where the first term is 1 and the constant difference is 1: 1, 2, 3, 4, 5, …. 

In general, if the first term is a1 and the common difference is d, then the nth term (an) is given by: 
𝑎" = 𝑎$ + (𝑛 − 1)𝑑 

The sum of a finite number of terms in an arithmetic progression is an arithmetic series. This is 
calculated by taking the average of the first and last terms and multiplying by the number of terms, 
giving: 

𝑛(𝑎$ + 𝑎")
2  

For instance, 

3 + 10 + 17 + 24 + 31 =
5(3 + 31)

2 =
5 × 34
2 = 85 

The partial sums of such series themselves form sequences, the most fundamental of which are the 
natural or counting and triangular numbers, (when d = 0 and 1, respectively), which we now need to 
generalize.  

Figurate numbers 
Perhaps the easiest way to visualize the way that sequences and series grow is geometrically, an approach 
that goes right back to Pythagoras. The ancient Greeks called these ‘figured numbers’,1 known as figurate 
or polytopic numbers today, 2  with different shapes (polygonal numbers) and different dimensions 
(polyhedral and higher-dimensional polytopic numbers).3 The most basic of the figurate numbers are the 
triangular numbers, simply consisting of the sum of the first n natural numbers: 

1 + 2 = 3 + 3 = 6 + 4 = 10 + 5 = 15 + 6 = 21 

      
Pythagoras called what is added each time a gnōmōn, cognate with Gnosis, with an interesting 
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etymology, best explained in terms of the square numbers: 
1  + 3 = 4  + 5 = 9  + 7 = 16  + 9 = 25  + 11 = 36  

      
Originally, a gnomon, meaning ‘inspector, indicator’, was an astronomical instrument for measuring 

time, as a ‘time-knower’, consisting of an upright stick, which cast shadows on a surface. This then 
became generalized as an instrument for drawing right angles, taking the shape of a capital letter L, like a 
carpenter’s square. Pythagoras then noticed that this L-shape was what is added 
to the square numbers at each step, thereby calling odd numbers ‘gnomons’, 
marked red in the above diagram, called gnomic numbers today.4 Conversely, 
the L-shape is what is left from a square when a smaller square is removed from 
it. In The Elements, Euclid generalized this notion of gnomon into what is left 
in a parallelogram, when a smaller, similar parallelogram is removed from it.5 
Later still, Heron of Alexander defined “a gnomon in general as that which, when added to anything, 
number or figure, makes the whole similar to that which it is added”.6 

 
As Hypsicles observed around 175 BCE, quoted by Diophantus in Polygonal Numbers, the set of 

polygonal numbers is formed when, starting with 1, the gnomons increase in arithmetic progression. For 
instance, triangular numbers are formed from the natural numbers, where d is 1. In general, m-gonal 
numbers are formed when the common difference, d, in the sequence of gnomons is m - 2.7  

To illustrate the hierarchical growth of polygonal numbers, here are the first five in graphical form, 
including the natural numbers, in just one dimension. 

 
 

  

 
In numerical terms, polygonal numbers are generated sequences of partial sums of seed sequences, 

whose terms, after the first, are gnomons, as the differences between the terms of the generated 
sequences. This table lists the first few of these, where the OEIS IDs are references to The On-Line 
Encyclopedia of Integer Sequences, introduced in the previous chapter: 

Type Seed sequence OEIS Generated sequence OEIS  
Natural 1, 1, 1, 1, 1, … A000012 1, 2, 3, 4, 5, … A000027 
Triangular 1, 2, 3, 4, 5, … A000027 1, 3, 6, 10, 15, … A000217 
Square 1, 3, 5, 7, 9, … A005408 1, 4, 9, 16, 25, … A000290 
Pentagonal 1, 4, 7, 10, 13, … A016777 1, 5, 12, 22, 35, … A000326 
Hexagonal 1, 5, 9, 13, 17, … A016813 1, 6, 15, 28, 45, … A000384 
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As these seed sequences are in arithmetic progression, we can express this as a difference equation, also 
called a recurrence equation or relation, which is the discrete analogue of a differential equation in the 
calculus.8 In this case, the recurrence equation for the seed recurrence sequence is: 

𝐴5(𝑛 + 1) = 𝐴5(𝑛) + (𝑚 − 2),									𝐴5(1) = 1 
Solving, the general formula for Am(n), generating m-gonal figurate numbers, including the initial 

value, is given by: 
𝐴5(𝑛) = 1 + (𝑚 − 2)(𝑛 − 1) = 𝑚𝑛 −𝑚 − 2𝑛 + 3 

This formula is valid for m = 2, so we can regard the natural numbers as a degenerate, one-dimensional 
sequence of polygonal numbers, whose nth terms increase arithmetically, with the common difference 
being the triangular numbers. Then the nth m-gonal term, Pm(n), is the partial sum of arithmetical 
sequences, for m ≥ 2, including the degenerate case: 

𝑃5(𝑛) =:𝐴5(𝑖)
"

<=$

=:(1 + (𝑚 − 2)(𝑖 − 1)
"

<=$

) 

We thus have this difference equation:9 
𝑃5(𝑛 + 1) = 𝑃5(𝑛) + 𝐴5(𝑛 + 1) = 𝑃5(𝑛)+ (1 + (𝑚 − 2)𝑛),								𝑃5(1) = 1 

Solving, we then have:10 

𝑃5(𝑛) =
1
2𝑛
[(𝑛 − 1)𝑚 − 2(𝑛 − 2)] =

1
2𝑛[

(𝑚 − 2)𝑛 + (4 −𝑚)] 

Here are the simplified formulae for the nth terms in the first few polygonal numbers, for m ≥ 2: 

m Type Gnomon Sequence 

2 Natural 1 
1
2𝑛 ∙ 2 = 𝑛 

3 Triangular 𝑛 
1

2
𝑛(𝑛 + 1) 

4 Square 2𝑛 − 1 
1
2𝑛 ∙ 2𝑛 = 𝑛A 

5 Pentagonal 3𝑛 − 2 
1
2𝑛
(3𝑛 − 1) =

1
2 (3𝑛

A − 𝑛) 

6 Hexagonal 4𝑛 − 3 
1
2𝑛
(4𝑛 − 2) =

1
22𝑛(2𝑛 − 1) = 2𝑛A − 𝑛 

 
If we now regard each generated sequence as a seed sequence for the next level of generated sequence, 

where the terms in the seed sequences after the first serve as gnomons, we can generate a collection of 
pyramidal numbers in three dimensions, extended into four and more, indefinitely. To illustrate the 
general principle, as triangular numbers generate tetrahedral ones in three dimensions, we have this 
recurrence equation, where 𝑃BA(𝑛) is 𝑃B(𝑛), where the superscript denotes the notional spatial dimension. 

𝑃BB(𝑛 + 1) = 𝑃BB(𝑛) + 𝑃BA(𝑛 + 1) = 	𝑃BB(𝑛) +
1
2 (𝑛 + 1)(𝑛 + 2)														𝑃B

B(1) = 1 
Solving, gives: 

𝑃BB(𝑛) =
1
6𝑛(𝑛 + 1)(𝑛 + 2) 

The tetrahedral numbers are 1, 4, 10, 20, 35, …. representing the way that balls can be stacked in a 
triangular pyramid. Similarly, the square numbers generate a square pyramid with this sequence of 
numbers: 1, 5, 14, 30, 55, …. Here are a couple of pictures of these pyramids borrowed from the web 
until I find someone to help me with the illustrations: 
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The higher dimensional m-gons do not represent such neatly stacked balls. Nevertheless, further 

sequences of numbers can be generated from them, called pentagonal pyramidal, hexagonal pyramidal, 
and so on. The general formula for these 3-dimensional m-gonal pyramidal numbers is: 

𝑃5B(𝑛) =
1
6𝑛
(𝑛 + 1)[(𝑚 − 2)𝑛 + (5 −𝑚)] 

We can extend these three-dimensional figurate numbers into higher dimensions with this generalized 
recurrence equation, where d denotes the dimension, although it is not generally possible to visualize 
these geometrically, as the mathematics outlined in the final section describes: 

𝑃5D(𝑛 + 1) = 𝑃5D(𝑛)+ 𝑃5DE$(𝑛 + 1)													𝑃5D(1) = 1 
In the case of m = 3, the figurate numbers form sequences that can be arranged in higher dimensional 

simplexes, described on page 316, with the sequences themselves forming Pascal’s triangle, pyramid, etc., 
outlined in the section beginning on page 195. This table gives the first few examples of sequences 
generated from m-gons up to five dimensions:11 

Type 3-D OEIS 4-D OEIS  5-D OEIS  
Tetrahedral 1, 4, 10, 20, 35, … A000292 1, 5, 15, 35, 70, … A000332  1, 6, 21, 56, 126, … A000389 
Square pyramidal 1, 5, 14, 30, 55, … A000330 1, 6, 20, 50, 105, … A002415 1, 7, 27, 77, 182, … A005585 
Pentagonal pyramidal 1, 6, 18, 40, 75, … A002411 1, 7, 25, 65, 140, … A001296 1, 8, 33, 98, 238, … A051836 
Hexagonal pyramidal 1, 7, 22, 50, 95, … A002412 1, 8, 30, 80, 175, … A002417 1, 9, 39, 119, 294, … A034263 

The general formula for 4-dimensional m-gonal pyramidal numbers is: 

𝑃5F(𝑛) =
1
24𝑛

(𝑛 + 1)(𝑛 + 2)[(𝑚 − 2)𝑛 + (6 − 𝑚)] =
1
4 G
𝑛
3H
[(𝑚 − 2)𝑛 + (6 − 𝑚)] 

The general formula for 5-dimensional m-gonal pyramidal numbers is: 

𝑃5I(𝑛) =
1
120𝑛

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)[(𝑚 − 2)𝑛 + (7 −𝑚)] =
1
5 G
𝑛
4H
[(𝑚 − 2)𝑛 + (7 −𝑚)] 

From this pattern, we can see that the general formula for k-dimensional m-gonal pyramidal numbers 
is: 

𝑃5D(𝑛) =
1
𝑑
J
𝑛 + 𝑑 − 2
𝑑 − 1

K [(𝑚 − 2)𝑛 + (𝑑 + 2 −𝑚)] 

And here are some particular instances to illustrate the pattern: 

Type 2-D 3-D 4-D 5-D 

Triangular 1
2
𝑛(𝑛 + 1) 

1
6
𝑛(𝑛 + 1)(𝑛 + 2) 

1
24
𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) 

1
120

𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4) 

Square 𝑛A 
1
6
𝑛(𝑛 + 1)(2𝑛 + 1) 

1
12
𝑛(𝑛 + 1)A(𝑛 + 2) 1

120
𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(2𝑛 + 3) 

Pentagonal 1
2
𝑛(3𝑛 − 1) 

1
2
𝑛A(𝑛 + 1) 

1
24
𝑛(𝑛 + 1)(𝑛 + 2)(3𝑛 + 1) 

1
120

𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(3𝑛 + 2) 

Hexagonal 𝑛(2𝑛 − 1) 
1
6
𝑛(𝑛 + 1)(4𝑛 − 1) 

1
6
𝑛A(𝑛 + 1)(𝑛 + 2) 

1
120

𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(4𝑛 + 1) 
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In addition to the standard corner polygonal numbers, it is possible to create centred polygonal 

numbers, in which layers of regular polygons are drawn centred around a dot, each layer having a constant 
number of sides. Each side of a polygonal layer contains one dot more than a side in the previous layer, so 
starting from the second polygonal layer each layer of a centred m-gonal number contains m more dots 
than the previous layer. These diagrams illustrate the first few: 

 
As you can see from the diagrams, the gnomons for the centred m-gonal numbers are successive 

multiples of m, illustrated in this table: 

Type Seed sequence OEIS Generated sequence OEIS  
Triangular 1, 3, 6, 9, 12, … A008486 1, 4, 10, 19, 31, … A005448 
Square 1, 4, 8, 12, 16, … A008574 1, 5, 13, 25, 41, … A001844 
Pentagonal 1, 5, 10, 15, 20, … A008706 1, 6, 16, 31, 51, … A005891 
Hexagonal 1, 6, 12, 18, 24, … A008458 1, 7, 19, 37, 61, … A003215 

As these centred seed sequences are in multiples of m for n > 1, there is no recurrence equation for all 
Mm(n) that generates them. Rather, we can see directly: 

𝑀5(𝑛) = 𝑚(𝑛 − 1),							𝑀5(1) = 1	 
Thus, the nth centred m-gonal number is given by this formula, as the partial sums of the seed 

sequences: 

𝐶5(𝑛) =:𝑀5(𝑖)
"

<=$

=:(1 +𝑚(𝑖 − 1)
"

<=$

) 

From this we have this recurrence equation:12 
𝐶5(𝑛 + 1) = 𝐶5(𝑛) +𝑀5(𝑛 + 1) = 𝐶5(𝑛)+ 𝑚𝑛,							𝐶5(1) = 1 

Solving this equation, the general formula for the partial sums of the seed sequences is: 

𝐶5(𝑛) = 1 +
𝑚 ∙ 𝑛
2

(𝑛 − 1) =
𝑚𝑛A − 𝑚𝑛 + 2

2 =
𝑚
2 𝑛

(𝑛 − 1) + 1 

For instance, here are the specific formulae for the first few centred polygonal numbers.13 

Type Gnomon Sequence 

Triangular 3(𝑛 − 1) 3
2𝑛
(𝑛 − 1) + 1 

Square 4(𝑛 − 1) 2𝑛(𝑛 − 1) + 1 

Pentagonal 5(𝑛 − 1) 5
2𝑛(𝑛 − 1) + 1 

Hexagonal (Hex)14 6(𝑛 − 1) 3𝑛(𝑛 − 1) + 1 = 𝑛B − (𝑛 − 1)B	
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Like the standard polygonal numbers, the centred ones can be used as seed sequences for the next level 

of generated sequences, as centred pyramidal numbers in three and more dimensions.15 Here is the 
general formula: 

𝐶5D (𝑛 + 1) = 𝐶5D(𝑛) + 𝐶5DE$(𝑛 + 1)													𝐶5D (1) = 1 
For instance, the centred tetrahedral numbers are generated from: 

𝐶BB(𝑛 + 1) = 𝐶BB(𝑛)+ 𝐶BA(𝑛 + 1) = 𝐶BB(𝑛) +
3
2𝑛
(𝑛 + 1) + 1													𝐶5B (1) = 1 

Solving, the formula for 3-dimensional centred pyramidal numbers is: 

𝐶BB(𝑛) =
1
2𝑛(𝑛

A + 1) 

And the general formula is: 

𝐶5B (𝑛) =
1
6𝑛
(𝑚𝑛A −𝑚 + 6) 

When m = 6, the three-dimensional extension of the hex numbers are cubes.16. Feeding the general 
result into the general recurrence formula gives: 

𝐶5F (𝑛) =
1
24𝑛(𝑛 + 1)

(𝑚𝑛A +𝑚𝑛 − 2𝑚 + 12) 

Moving to the next dimension, we have: 

𝐶5I (𝑛) =
1
120𝑛(𝑛 + 2)

(𝑚𝑛B + 3𝑚𝑛A −𝑚𝑛 − 3𝑚 + 20𝑛 + 20) 

Out of interest, here is the next one: 

𝐶5N (𝑛) =
1
720𝑛(𝑛 + 3)

(𝑚𝑛F + 6𝑚𝑛B + 7𝑚𝑛A − 8𝑚 + 30𝑛A + 90𝑛 + 60) 
It is therefore not easy to determine a general formula of the d-th dimension, m-gonal centred 

‘pyramidal’ numbers. Nevertheless, here are the first few sequences with their OEIS references, with the 
5-D centred ‘pyramidal’ numbers not included. 

Type 3-D OEIS 4-D OEIS  5-D OEIS  
Triangular 1, 5, 15, 34, 65, … A006003 1, 6, 21, 55, 120, … A002817 1, 7, 28, 83, 203, … — 
Square 1, 6, 19, 44, 85, … A005900 1, 7, 26, 70, 155, … A006325 1, 8, 34, 104, 259, … A033455 
Pentagonal 1, 7, 23, 54, 105, … A004068 1, 8, 31, 85, 190, … A006322 1, 9, 40, 125, 315, … A006414 
Hexagonal 1, 8, 27, 64, 125, … A000578 1, 9, 36, 100, 225, … A000537 1, 10, 46, 146, 371, … A024166 

Of particular note is that the sum of the first n cubes (A000537) is the square of the nth triangular 
number, 17 known as Nichmachus’s theorem18 after Nichmachus of Gerasa (c.60–c.120 CE), who included 
it in Introduction to Arithmetic, more a systematic, mystical treatise than a formal mathematical one, such 
as Euclid’s Elements.19 That is: 

1B + 2B + 3B + ⋯+ 𝑛B = (1 + 2 + 3 +⋯+ 𝑛)A 
And here are some particular instances of the nth terms to illustrate the unknown general pattern: 

Type 2-D 3-D 4-D 5-D 

Triangular 3
2
𝑛(𝑛 − 1) + 1 

1
2
𝑛(𝑛A + 1) 

1
8
𝑛(𝑛 + 1)(𝑛A + 𝑛 + 2) 1

120
𝑛(𝑛 + 2)(3𝑛B + 9𝑛A + 17𝑛 + 11) 

Square 2𝑛(𝑛 − 1) + 1 
1
3
𝑛(2𝑛A + 1) 1

6
𝑛(𝑛 + 1)(𝑛A + 𝑛 + 1) 1

30
𝑛(𝑛 + 1)(𝑛 + 2)(𝑛A + 2𝑛 + 2) 

Pentagonal 5
2
𝑛(𝑛 − 1) + 1 

1
6
𝑛(5𝑛A + 1) 

1
24
𝑛(𝑛 + 1)(5𝑛A + 5𝑛 + 1) 

1
24
𝑛(𝑛 + 2)(𝑛B + 3𝑛A + 3𝑛 + 1) 

Hexagonal 3𝑛(𝑛 − 1) + 1 𝑛B 
1
4
𝑛A(𝑛 + 1)A 

1
60
𝑛(𝑛 + 2)(3𝑛B + 9𝑛A + 7𝑛 + 1) 
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Type 2-D 3-D 4-D 5-D 

Heptagonal 7
2
𝑛(𝑛 − 1) + 1 

1
6
𝑛(7𝑛A − 1) 

1
24
𝑛(𝑛 + 1)(7𝑛A + 7𝑛 − 2) 

1
120

𝑛(𝑛 + 2)(7𝑛B + 21𝑛A + 13𝑛 − 1) 

 
Rather than generating higher dimensional figurate numbers from polygonal and centred polygonal 

numbers, polyhedral and higher-dimensional polytopic numbers can be generated directly from more 
general recurrence equations. The most obvious place to start is with the regular polytopes, such as the 
five Platonic solids in three dimensions. This is what Hyun Kwang Kim did in 2002 in a paper titled ‘On 
Regular Polytope Numbers’, further explored in 2012 in Figurate Numbers by Elena Deza and Michel 
Marie Deza, the long-awaited textbook on the subject. However, the algorithms are rather involved, not 
fully explained in the Wiki pages of The On-Line Encyclopedia of Integer Sequences on ‘Platonic numbers’ 
and ‘Centered Platonic numbers’.20 So in this edition of this chapter, I’ll mainly present the results rather 
than how they are generated. 

We have already seen three of the Platonic numbers. The first are the tetrahedral numbers, 𝑃BB(𝑛), 
which we can denote as 𝑃𝑙F(𝑛), where the subscript denotes the number of vertices in 𝑃𝑙R(𝑛). This 
triangular pyramid is depicted on page 189. Next to this photo is a depiction of the square pyramid, which 
can be regarded as the top of an octahedron, viewed as a dipyramid. So,  

𝑃𝑙N(𝑛) = 𝑃FB(𝑛)+𝑃FB(𝑛 − 1) =
1
6𝑛
(𝑛 + 1)(2𝑛 + 1) +

1
6 (𝑛 − 1)𝑛

(2𝑛 − 1) =
1
3𝑛(2𝑛

A + 1) = 𝐶FB(𝑛) 

Regarding the cubic numbers, these are the three-dimensional extensions of the centred hexagonal 
numbers 𝐶NB(𝑛) , as Conway and Guy illustrate.21  More directly, this is how cubes can be stacked, 
depicting the cubic number as 𝑃𝑙S(𝑛): 

 
More generally, Deza and Deza describe the more complex general procedure for generating all five 

Platonic numbers, as an extension of the diagrams that generate the polygonal numbers. Here is a 
summary: 

Platonic solid Sequence OEIS nth term 

Tetrahedron 1, 4, 10, 20, 35, … A000292 1
6
𝑛(𝑛 + 1)(𝑛 + 2) 

Octahedron 1, 6, 19, 44, 85, … A005900 1
3
𝑛(2𝑛A + 1) 

Cube 1, 8, 27, 64, 125, … A000578 𝑛B 

Icosahedron 1, 12, 48, 124, 255, … A006564 1
2
𝑛(5𝑛A − 5𝑛 + 2) 

Dodecahedron 1, 20, 84, 220, 455, … A006566 1
2
𝑛(3𝑛 − 1)(3𝑛 − 2) = J

3𝑛
3
K 

Like the ordinary Platonic numbers, the centred Platonic numbers can be generated from a 3-
dimensional generalization of the way that the centred polygonal numbers are generated, depicted on 
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page 190. Again, the general recurrence equation for this class of five sequences is rather involved. 
However, the general formula for the nth centred Platonic polyhedron with V vertices is:22 

𝐶𝑃𝑙R(𝑛) =
(2𝑛 + 1)(𝑘R𝑛A + 𝑘R𝑛 + 3)

3  

where 𝑘R = {1, 2, 3, 5, 15} for 𝑉 = {4, 6, 8, 12, 20}, respectively. Here are the particular terms: 

Centred Sequence OEIS nth term 

Tetrahedron 1, 5, 15, 35, 69, … A005894 1
3
(2𝑛 − 1)(𝑛A − 𝑛 + 3) 

Octahedron 1, 7, 25, 63, 129, … A001845 1
3
(2𝑛 − 1)(2𝑛A − 2𝑛 + 3) 

Cube 1, 9, 35, 91, 189, … A005898 𝑛B + (𝑛 − 1)B = (2𝑛 − 1)(𝑛A − 𝑛 + 1) 

Icosahedron 1, 13, 55, 147, 309, … A005902 1
3
(2𝑛 − 1)(5𝑛A − 5𝑛 + 3) 

Dodecahedron 1, 33, 155, 427, 909, … A005904 (2𝑛 − 1)(5𝑛A − 5𝑛 + 1) 

 
Hyun Kwang Kim, using his general recurrence equation for generating the regular polytopic numbers, 

presents the formulae for their nth terms in the six 4-dimensional regular polytopes, where the Schläfli 
symbol in described in the final section of this chapter:23 

Polytope Schläfli symbol Sequence OEIS nth term 

5-cell {3, 3, 3} 1, 5, 15, 35, 70, … A000332  1
24
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) = G

𝑛
4
H 

16-cell {3, 3, 4} 1, 8, 33, 96, 225, 456, 833 … A014820 1
3
𝑛A(𝑛A + 2) 

Tesseract {4, 3, 3} 1, 16, 81, 256, 625, … A000583 𝑛F 

24-cell {3, 4, 3} 1, 24, 153, 544, 1425, … A092181 𝑛A(3𝑛A − 4𝑛 + 2) 

600-cell {3, 3, 5} 1, 120, 947, 3652, 9985, … A092182 
𝑛
6
(145𝑛B − 280𝑛A + 179𝑛 − 38) 

120-cell {5, 3, 3} 1, 600, 4983, 19468, 53505, … A092183 𝑛
2
(261𝑛B − 504𝑛A + 283𝑛 − 38) 

After this, only the first three polytopes extend into five dimensions and more, indefinitely. The 
regular simplexes and hypercubes or measure polytopes, which Harold Scott MacDonald ‘Donald’ 
Coxeter (1907–2003) designates 𝛼" and 𝛾", respectively,24 are intuitively straightforward. The nth term 
for the d-dimensional simplex numbers is simply: 

J
𝑛 + 𝑑 − 1

𝑑
K 

And the nth term for the d-dimensional hypercube numbers is simply the dth power of n: 𝑛D . 
However, as Kim states, “the formulæ for the cross-polytope [𝛽"] numbers are complicated and look 
unnatural.” Nevertheless, there is a close relationship between cross- and measure-polytope numbers, 
involving Eulerian numbers, which we do not need to explore further for the moment. 

 
There is no need to stop here with figurate numbers. There are centred polytopic numbers in higher 

dimensions. And if we were to consider nonconvex regular (e.g. stellated) polytopic numbers or consider 
nonregular (e.g. Archimedean solids) polytopic numbers, this “would open the door to a humongous 
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number of possibilities”, as a contributor to the OEIS Wiki’s page on ‘Classifications of figurate numbers’ 
tells us.25 

To give three examples from Conway and Guy, we can generate figurate numbers by cutting off 
corners from the regular polyhedra, stellating them, or with duals of the Archimedean polyhedra. 

For instance, we can form truncated tetrahedral numbers by chopping off tetrahedral numbers from 
each corner of a tetrahedral number in this manner:26 

𝑇𝑃BB(𝑛) = 𝑃BB(3𝑛 − 2) − 4𝑃BB(𝑛 − 1) =
$
A
(3𝑛 − 2)(3𝑛 − 1)𝑛 − A

B
(𝑛 − 1)𝑛(𝑛 + 1) = $

N
𝑛(23𝑛A − 27𝑛 + 10) 

The truncated tetrahedral numbers generated from this recurrence equation are 1, 16, 68, 180, 375, … 
(A005906 in OEIS). 

Johannes Kepler, my all-time favourite scientist, is quoted as naming the only stellation of the 
octahedron the stella octangular in 1611 in De Nive Sexangula (The Six-Cornered Snowflake).27 We can 
form stella octangular numbers by adding tetrahedral numbers to each face of octahedral numbers to form 
a compound of dual tetrahedral numbers:28 

𝑆𝑡𝑒𝑙(𝑛) = 𝑃𝑙N(𝑛) + 8𝑃𝑙F(𝑛 − 1) =
1
3𝑛
(2𝑛A + 1) +

4
3 (𝑛 − 1)𝑛(𝑛 + 1)) = 𝑛(2𝑛A − 1) 

The stella octangular numbers generated from this recurrence equation are 1, 14, 51, 124, 245, … 
(A007588 in OEIS). 

The rhombic dodecahedron is another fascinating polyhedron, as the 
dual of the cuboctahedron, consisting of twelve diamond-shaped faces 
corresponding to the edges of the cube and octahedron. It appears in nature 
as a garnet crystal.29  It is one of three polyhedra that tesselate three-
dimensional space, the others being cubes and truncated octahedra, much as 
triangles, squares, and hexagons tesselate two-dimensional space. 

The rhombic dodecahedron can be viewed as a cube inside out, with six 
internal square pyramids appended to the faces of the cube.30 A similar construct with the 
hypercube in four dimensions leads to the 24-cell, which Matt Parker delightfully calls a 
hyper-diamond, which is regular in four dimensions, consisting of 24 octahedra, 96 
triangular faces, 96 edges, and 24 vertices,31 which exists only in four dimensions. 

In three dimensions, rhombic dodecahedral numbers can therefore be formed by adding square 
pyramidal numbers to the six faces of centred cubic numbers:32 

𝑅ℎ𝑜(𝑛) = 𝐶𝑃𝑙S(𝑛) + 6𝑃FB(𝑛 − 1) = (2𝑛 − 1)(𝑛A − 𝑛 + 1) + (𝑛 − 1)𝑛(2𝑛 − 1) = (2𝑛 − 1)(2𝑛A − 2𝑛 + 1) 
The rhombic dodecahedral numbers generated from this recurrence equation are 1, 15, 65, 175, 369, 

… (A005917 in OEIS). Another interesting pattern appears here. Rhombic dodecahedral numbers are 
the differences of consecutive powers of four, just as hex numbers are the differences between consecutive 
cubes. For  

𝑅ℎ𝑜(𝑛) = 𝑛F − (𝑛 − 1)F = 𝑛F − (𝑛F − 4𝑛B + 6𝑛A − 4𝑛 + 1) = (2𝑛 − 1)(2𝑛A − 2𝑛 + 1) 
These similarities are two instances of a class of figurate numbers, known as nexus numbers, built up of 

the nexus of cells fewer than n steps away from a given cell. The nth d-dimensional nexus number is given 
by, increasing n by 1 to make the coefficients of the powers of n positive: 

𝑁D(𝑛) =:J
𝑑 + 1
𝑘

K
D

c=d

= (𝑛 + 1)De$ − 𝑛De$ 

Here are the first few nexus numbers, to illustrate the general pattern: 
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d Name OEIS 𝑵𝒅(𝒏) Sequence (from n = 0) 

0 Unit A000012 1 1, 1, 1, 1, 1, … 

1 Odd number A005408 2𝑛 + 1 1, 3, 5, 7, 9, … 

2 Hex number A003215 3𝑛A + 3𝑛 + 1 1, 7, 19, 37, 61, … 

3 Rhombic dodecahedral A005917 4𝑛B + 6𝑛A + 4𝑛 + 1 1, 15, 65, 175, 369, … 

4  A022521 5𝑛F + 10𝑛B + 10𝑛A + 5𝑛 + 1 1, 31, 211, 781, 2101, … 

5  A022522 6𝑛I + 15𝑛F + 20𝑛B + 15𝑛A + 6𝑛 + 1 1, 63, 665, 3367, 11529, … 

6  A022523 7𝑛N + 21𝑛I + 35𝑛F + 35𝑛B + 21𝑛A + 7𝑛 + 1 1, 127, 2059, 14197, 61741, … 

Conway and Guy describe the way that the hex numbers are formed by referring to 
a hexagonal tessellation, where each dot in the figure for the centred hexagonal 
numbers is replaced by a hexagonal cell, as in this diagram, like a bee’s honeycomb. 
𝑁A(𝑛) is then the number of hexagons at a distance n or less from the referenced 
hexagonal cell. 

In three dimensions, the situation is somewhat trickier. The base honeycomb 
consists of truncated octahedra, but the number of truncated octahedra 𝑁B(𝑛) within a nexus of any one 

cell has the shape of a rhombic dodecahedron.33 In contrast, in the case of the 
hex numbers, the base cells and the nexus constructed around the cells have 
the same shape. 

In Regular Polytopes, Coxeter refers to honeycombs as ‘degenerate’ 
polytopes, designated 𝛿".34 However, are there higher dimensional honey-
combs, corresponding to truncated octahedra in three dimensions, as the 
centre around which the higher dimensional nexus numbers could be 
formed? Indeed, there are, as we see in the section on permutatopes on page 

328. In the meantime, it is now appropriate to end this brief review of the figurate numbers. 

Multinomials and Pascal’s pyramidal simplexes  
Another way that sequences and series are generated is as the coefficients of multinomials, consisting of a 
polynomial with m variables raised to the power of n. The most basic case are the binomials, whose 
coefficients can be arranged in what is commonly called Pascal’s triangle, named after Blaise Pascal (1623–
1662) because he was the first to make any sort of systematic study of the relationships in its internal 
structure. When the results of his studies in Traité du triangle arithmétique (A Treatise on the Arithmetical 
Triangle) were posthumously published in 1665, he began with the triangle on the next page, which I have 
simplified to highlighted the essential structure.35 

Pascal was not the first to present what can be also called a Figurate Triangle, a Combinatorial Triangle, 
or a Binomial Triangle, as A. W. F. Edwards tells us in Pascal’s Arithmetical Triangle,36 which provides an 
excellent history of this evolutionary development. For instance, Michael Stifel (1487–1567) gave a form of 
the Figurate Triangle in 1544 and 1545, when studying the extraction of roots, extending the triangular 
numbers to four and more dimensions, long after the Greeks had studied the first few dimensions. Then 
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in 1570, Gerolamo Cardano (1501–1576) presented a form of the Combinatorial Triangle in his Opus 
novum. Regarding the Binomial Triangle, Chu Shih-Chieh presented the binomial coefficients to the 
eighth power in Precious Mirror of the Four Elements in 1303, extending the work of Chia Hsien around 
1100.37 As David M. Burton tells us, “The first triangular arrangement of the binomial coefficients to be 
printed in European books appeared on the title page of the Rechnung (1527) of Peter Apian (1495–1552)”.38 
It appeared again in 1545 in De numeris by Johann Scheubel (1494–1570), known as Scheubelius, and in 
1556 in General trattato by Niccolò Fontana Tartaglia (1499/1500–1557).39 

Rather than starting with any of these particular ways to view 
what Pierre Raymond de Montmort (1678–1719) was to call 
‘Pascal’s Triangle’ in 1708, about August 1654 Pascal set out to 
write a treatise of pure mathematics, starting afresh from a few 
basic principles. This is an example of evolutionary convergence, 
which reaches its glorious culmination in Integral Relational 
Logic, presented in Chapter 2. 

Indeed, Pascal begins with the top-left-hand corner number, 
which he calls the generator, extending this into the first row and 
column, from which the entire triangle can be generated by 
adding the numbers above and to the left of each cell. He then 

proceeds to list eighteen corollaries of the relationships between these numbers.40 In Part II, Pascal then 
shows how his triangle can be used in the theories of figurate number and combinations and to find the 
powers of binomial equations.41 Traité du triangle arithmétique thus has a similar structure to Descartes’ 
Discourse on the Method, in which Geometry is an example of the method in practice, and this book, in 
which the last three chapters show how Integral Relational Logic can be used to map the whole of 
mathematics as a generative science of patterns and relationships, lying within the Cosmic Psyche. 

Beyond the triangle, binomial coefficients can be arranged in a triangular pyramid, and in higher 
dimensional polytopes, matching the multidimensional structure of the Universe as a whole, not so easy 
to visualize geometrically. Nevertheless, let us begin with the most general form of the multinomial, 
where the coefficients of the variables are 1, which is this monstrous expression: 

(𝑥$ + 𝑥A +⋯+ 𝑥5)" = : J
𝑛

𝑘$,𝑘A, … , 𝑘5
K

clecme⋯ecn="

o𝑥p
cq

5

p=$

 

where 

J
𝑛

𝑘$, 𝑘A,… , 𝑘5
K =

𝑛!
𝑘$!	𝑘A!… , 𝑘5!

 

The total number of terms in such a multinomial is mn, the first few totals being given in this table: 

m\n 1 2 3 4 5 6 
1 1 1 1 1 1 1 
2 2 4 8 16 32 64 
3 3 9 27 81 243 729 
4 4 16 64 256 1,024 4,096 
5 5 25 125 625 3,125 15,625 
6 6 36 216 1,296 7,776 46,656 

Thankfully, these terms are not all unique. For instance, if we denote the variables as a, b, c, d, …, the 
coefficient for 𝑎𝑏𝑐𝑑A in (𝑎 + 𝑏 + 𝑐 + 𝑑)I	is  

5!
1! 1! 1! 2! =

120
2 = 60 

 1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 

2 1 2 3 4 5 6 7 8 9  
3 1 3 6 10 15 21 28 36   
4 1 4 10 20 35 56 84 Parallel ranks 

5 1 5 15 35 70 126  
6 1 6 21 56 126 Arithmetical Triangle 
7 1 7 28 84       
8 1 8 36        
9 1 9         

10 1          

Pe
rp

en
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one of 56 distinct terms, totalling 45 = 1024. In general, the number of distinct terms in (𝑥$ + 𝑥A +⋯+
𝑥5)" is given by: 

G𝑛 +𝑚 − 1
𝑚 H 

proved by the ingenious stars-and-bars method in combinatorics,42 and enumerated in this table: 

m\n 1 2 3 4 5 6 
1 1 1 1 1 1 1 
2 2 3 4 5 6 7 
3 3 6 10 15 21 28 
4 4 10 20 35 56 84 
5 5 15 35 70 126 210 
6 6 21 56 126 252 462 

Considering the much simpler binomials, here are the first few polynomial expansions of (𝑎 + 𝑏)", 
visualized geometrically on the right, where the fourth power extends into the fourth dimension:43 
(𝑎 + 𝑏)d = 1 
(𝑎 + 𝑏)$ = 𝑎 + 𝑏 
(𝑎 + 𝑏)A = 𝑎A + 2𝑎𝑏 + 𝑏A 
(𝑎 + 𝑏)B = 𝑎B + 3𝑎A𝑏 + 3𝑎𝑏A + 𝑏B 
(𝑎 + 𝑏)F = 𝑎F + 4𝑎B𝑏 + 6𝑎A𝑏A + 4𝑎𝑏B + 𝑏F 
(𝑎 + 𝑏)I = 𝑎I + 5𝑎F𝑏 + 10𝑎B𝑏A + 15𝑎A𝑏B + 10𝑎𝑏F + 𝑏I 

As can be seen, the number of terms increases 
by one with each increase in the power, and so can 
be arranged in a triangle.  

If we let a = 1 and b = x, we have this general 
expression for the binomial coefficients: 

(1 + 𝑥)" =:G𝑛𝑘H
"

c=d

𝑥"Ec 

where  

G𝑛𝑘H =
𝑛!

𝑘! (𝑛 − 𝑘)! 

also known as the number of ways of selecting k items from a group of n items in combination theory, 
often pronounced ‘n choose k’, where n! is factorial n, defined as the product of all the integers up to n, as 
we saw in Chapter 3. Some alternative notations for binomials, writable in a single line in text, are  
𝐶(𝑛, 𝑘), 𝐶c" , and 𝐶c" , where C stands for combinations or choices. 

Now, as every term in the triangle in pyramidal form, other than those on the sloping outside edges, is 
the sum of the two terms above it, we have this recurrence equation, known as Pascal’s triangle rule:44 

G𝑛𝑘H = G𝑛 − 1𝑘 − 1H + G
𝑛 − 1
𝑘 H 

for n > 0, 0 ≤ k ≤ n, 𝐶(0,0) = 𝐶(𝑛, 0) = 1, and 𝐶(𝑛,−1) = 𝐶(𝑛, 𝑛 + 1) = 0. 
The most obvious property of Pascal’s triangle is that the sum of the coefficients on the nth row is 2n, 

which derives from the second row in the table on page 196. However, what is not clear is that each row 
can be read as a power of 11. For instance, on the third and fourth rows, 1331 = 113 and 14641 = 114. 
This formula is not so obvious on the fifth and subsequent rows, for the binomial coefficients are no 
longer single digits. Nevertheless, the formula does still hold, as we can see from the expansion of 
(10 + 1)":45 

(10 + 1)" = 11" =:G𝑛𝑘H
"

c=d

10"Ec 
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Rather than summing terms in the horizontal rows, the Fibonacci 
numbers, which we look at later, appear as the sum of terms in the 
shallow diagonals of Pascal’s triangle, as illustrated here. Because, as 
Édouard Lucas (1842–1891) derived:46 

𝐹"e$ = G𝑛0H + G
𝑛 − 1
1 H + G𝑛 − 22 H + ⋯ 

The most fundamental 
multidimensional figurate 
numbers also appear in 

Pascal’s triangle, in the main diagonals, arranged vertically in 
this representation from Wikipedia. In the notation of the 
subsection on the Figurate numbers, these sequences are given 
by: 

𝑃BD(𝑛) = J
𝑛 + 𝑑 − 1

𝑑
K 

where d ≥ 2, considering the natural numbers to be in one-dimensional space. 

 
With a trinomial, Pascal’s triangle becomes a triangular 

pyramid, not a tetrahedron, as some sources say, for the four 
faces are not treated equally. Rather, I would say that 
Pascal’s pyramid is the second of Pascal’s pyramidal 
simplexes, defined as simplexes with a ‘base’ that is a simplex 
of one dimension less than that of the simplex. This base 
represents the levels in the pyramidal simplexes as the 
powers of n increase. With a trinomial, we have a 
tetrahedron, with the expanding base being a triangle, 

illustrated here.47 The first few expansions of the trinomial are: 
(𝑎 + 𝑏 + 𝑐)d = 1 
(𝑎 + 𝑏 + 𝑐)$ = 𝑎 + 𝑏 + 𝑐 
(𝑎 + 𝑏 + 𝑐)A = 𝑎A + 𝑏A + 𝑐A + 2𝑎𝑏 + 2𝑏𝑐 + 2𝑐𝑎 
(𝑎 + 𝑏 + 𝑐)B = 𝑎B + 𝑏B + 𝑐B + 3𝑎A𝑏 + 3𝑎A𝑐 + 3𝑏A𝑎 + 3𝑏A𝑐 + 3𝑐A𝑎 + 3𝑐A𝑏 + 6𝑎𝑏𝑐 
(𝑎 + 𝑏 + 𝑐)F

= 𝑎F + 𝑏F + 𝑐F + 4𝑎B𝑏 + 4𝑎B𝑐 + 4𝑏B𝑎 + 4𝑏B𝑐 + 4𝑐B𝑎 + 4𝑐B𝑏 + 6𝑎A𝑏A + 6𝑏A𝑐A + 6𝑐A𝑎A + 12𝑎A𝑏𝑐 + 12𝑏A𝑎𝑐 + 12𝑐A𝑏𝑎 
Each level in the pyramid is a growing sequence of triangles, whose sums are successive powers of 3, 

illustrated in this table: 
Tri 0 Tri 1 Tri 2 Tri 3 Tri 4 Tri 5 

1 
 

 1  
1  1 

 

  1   
 2  2  
1  2  1 

 

   1    
  3  3   
 3  6  3  
1  3  3  1 

 

    1     
   4  4    
  6  12  6   
 4  12  12  1  
1  4  6  4  1 

 

     1      
    5  5     
   10  20  10    
  10  30  30  10   
 5  20  30  20  5  
1  5  10  10  5  1 

 

 
With quadrinomials, we need a four-dimensional pyramidal simplex whose growing levels are a 

sequence of tetrahedra. Here are the first few expansions of the quadrinomial, of rapidly growing 
complexity: 
(𝑎 + 𝑏 + 𝑐 + 𝑑)d = 1 
(𝑎 + 𝑏 + 𝑐 + 𝑑)$ = 𝑎 + 𝑏 + 𝑐 + 𝑑 
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(𝑎 + 𝑏 + 𝑐 + 𝑑)A = 𝑎A + 𝑏A + 𝑐A + 𝑑A + 2𝑎𝑏 + 2𝑎𝑐 + 2𝑎𝑑 + 2𝑏𝑐 + 2𝑏𝑑 + 2𝑐𝑑 
(𝑎 + 𝑏 + 𝑐 + 𝑑)B

= 𝑎B + 𝑏B + 𝑐B + 𝑑B + 3𝑎A𝑏 + 3𝑎A𝑐 + 3𝑎A𝑑 + 3𝑏A𝑎 + 3𝑏A𝑐 + 3𝑏A𝑑 + 3𝑐A𝑎 + 3𝑐A𝑏 + 3𝑐A𝑑 + 3𝑑A𝑎 + 3𝑑A𝑏 + 3𝑑A𝑐
+ 6𝑎𝑏𝑐 + 6𝑎𝑏𝑑 + 6𝑎𝑐𝑑 + 6𝑏𝑐𝑑 
(𝑎 + 𝑏 + 𝑐 + 𝑑)F

= 𝑎F + 𝑏F + 𝑐F + 𝑑F + 4𝑎B𝑏 + 4𝑎B𝑐 + 4𝑎B𝑑 + 4𝑏B𝑎 + 4𝑏B𝑐 + 4𝑏B𝑑 + 4𝑐B𝑎 + 4𝑐B𝑏 + 4𝑐B𝑑 + 4𝑑B𝑎 + 4𝑑B𝑏 + 4𝑑B𝑐
+ 6𝑎A𝑏A + 6𝑎A𝑐A + 6𝑎A𝑑A + 6𝑏A𝑐A + 6𝑏A𝑑A + 6𝑐A𝑑A + 12𝑎A𝑏𝑐 + 12𝑎A𝑏𝑑 + 12𝑎A𝑐𝑑 + 12𝑏A𝑎𝑐 + 12𝑏A𝑎𝑑 + 12𝑏A𝑎𝑑
+ 12𝑐A𝑎𝑏 + 12𝑐A𝑎𝑑 + 12𝑐A𝑏𝑑 + 12𝑑A𝑎𝑏 + 12𝑑A𝑎𝑐 + 12𝑑A𝑏𝑐 + 24𝑎𝑏𝑐𝑑 

Each level in the 4-simplex is a growing sequence of tetrahedra, whose sums are successive powers of 4, 
illustrated in this table:48 

Tet 0 Tet 1 Tet 2 Tet 3 Tet 4 
1 

 

 1  
 1  
1  1 

 

  1   
  2   
 2  2  
  1   
 2  2  
1  2  1 

 

   1    
   3    
  3  3   
   3    
  6  6   
 3  6  3  
   1    
  3  3   
 3  6  3  
1  3  3  1 

 

    1     
    4     
   4  4    
    6     
   12  12    
  6  12  6   
    4     
   12  12    
  12  24  12   
 4  12  12  4  
    1     
   4  4    
  6  12  6   
 4  12  12  1  
1  4  6  4  1 

  

 
If, rather than setting the xi in the general multinomial to letters of the alphabet, we set 𝑥< = 𝑥<E$, we 

form (1 + 𝑥 + 𝑥A + ⋯	𝑥5E$)" , where all Pascal’s pyramidal simplexes collapse into triangles. Pascal’s 
triangle, itself, does not collapse, for it is already in triangular form. In these multinomial triangles, the 
number of terms increases arithmetically, as the power increases, with the step each time being m - 1, like 
the seed sequences for the basic polygonal numbers. This table gives the number of terms in the 
multinomial expansions for the first few values of m and n. 

m\n 1 2 3 4 5 6 
1 1 1 1 1 1 1 
2 2 3 4 5 6 7 
3 3 5 7 9 11 13 
4 4 7 10 13 16 19 
5 5 9 13 17 21 25 
6 6 11 16 21 26 31 

Each term in an m-nomial triangle is the sum of the m terms symmetrically in the row above it, with 
the sloping sides being set to 1, with notional zeros outside the edges of the triangles, where necessary.  

Another interesting sequence emerges from these multinomial triangles: the sequences represented by 
their central multinomial coefficients. For instance, the cells marked in yellow below are the central 
binomial coefficients of the binomial triangle (i.e. Pascal’s triangle): 1, 2, 6, 20, 70, 252, 924, … (OEIS 
A000984). 

          1           
         1  1          
        1  2  1         
       1  3  3  1        
      1  4  6  4  1       
     1  5  10  10  5  1      
    1  6  15  20  15  6  1     
   1  7  21  35  35  21  7  1    
  1  8  28  56  70  56  28  8  1   
 1  9  36  84  126  126  84  36  9  1  

1  10  45  120  210  252  210  120  45  10  1 
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The central binomial coefficients are generated from: 

𝑎(𝑛) = J
2𝑛
𝑛
K =

(2𝑛)!
(𝑛!)A  

Next, the central trinomial triangle, as the collapse of Pascal’s Pyramid, is generated from the 
coefficients of the expansion of (1 + 𝑥 + 𝑥A)" , the sequence of the central trinomial coefficients being the 
largest in each row: 1, 1, 3, 7, 19, 51, 141, 393, … (OEIS A002426): 

          1           
         1 1 1          
        1 2 3 2 1         
       1 3 6 7 6 3 1        
      1 4 10 16 19 16 10 4 1       
     1 5 15 30 45 51 45 30 15 5 1      
    1 6 21 50 90 126 141 126 90 50 21 6 1     
   1 7 28 77 161 266 357 393 357 266 161 77 28 7 1    
  1 8 36 112 266 504 784 1016 1107 1016 784 504 266 112 36 8 1   
 1 9 45 156 414 882 2304 2304 2907 3139 2907 2304 2304 882 414 156 45 9 1  

In turn, the central quadrinomial triangle is generated from the expansion of the coefficients of the 
expansion of (1 + 𝑥 + 𝑥A + 𝑥B)", the sequence of the central quadrinomial coefficients being the largest in 
each alternate row, like the binomial triangle and all even-termed multinomials: 1, 4, 44, 580, 8092, 
116304, … (OEIS A005721): 

                  1                   
               1  1  1  1                
            1  2  3  4  3  2  1             
         1  3  6  10  12  12  10  6  3  1          
      1  4  10  20  31  40  44  40  31  20  10  4  1       
   1  5  15  35  65  101  135  155  155  135  101  65  35  15  5  1    

1  6  21  56  120  216  336  456  546  580  546  456  336  216  120  56  21  6  1 

The On-line Encyclopedia of Integer Sequences calls the next sequence central pentanomial coefficients. 
But this is mixing Greek and Latin roots, which philologists tell us should be avoided whenever possible. 
So, what I prefer to call the sequence of central quinquenomial coefficients is 1, 1, 5, 19, 85, 381, 1751, … 
(OEIS A005191), highlighted in this quinquenomial triangle: 

            1             
          1 1 1 1 1           
        1 2 3 4 5 4 3 2 1         
      1 3 6 10 15 18 19 18 15 10 6 3 1       
    1 4 10 20 35 52 68 80 85 80 68 52 35 20 10 4 1     
  1 5 15 35 70 221 185 255 320 365 381 365 320 255 185 221 70  35 15 5 1   

1 6 21 56 126 246 426 666 951 1246 1506 1686 1751 1686 1506 1246 951 666 426 246 126 56 21 6 1 

There is, of course, an infinite sequence of multinomial triangles, the next few being variously named 
sextinomial, sexanomial, or hexanomial; septinomial or heptanomial; and octonomial, but there is no need to 
explore these any further now that the general pattern is clear, albeit of increasing complexity. 

Lucas, Fibonacci, and Pell numbers 
Difference equations, which generate the figurate numbers, appear in many other branches of 
mathematics, not the least in nonlinear systems theory and combinatorics. I introduce the former in my 
2016 book Through Evolution’s Accumulation Point: Towards Its Glorious Culmination, where I describe how 
the logistic map can model all 13.8 billion years of evolution since the most recent big bang, explaining 
why all these aeons of evolution are degenerating into political, that is, psychological chaos at the 
moment. 

In that book, as an introduction to nonlinear difference equations, I briefly describe the famous 
Fibonacci sequence, generated from a second-order linear recurrence equation. In this subsection, I revisit 
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this sequence, as the Fibonacci numbers, as a special case of what are today called Lucas sequences, 
leading to the so-called Pell equation for estimating the square roots of non-square integers. 

 
In 1878, Édouard Lucas (1842–1891), a professor at Lycée Charlemagne in Paris, wrote an extensive 

paper titled ‘Théorie des fonctions numériques simplement périodiques’ (The Theory of Simply Periodic 
Numerical Functions),49 whose purpose was “to study the symmetric functions of the roots of a quadratic 
equation, and their application to the theory of prime numbers”.50 We saw in Chapter 3 ‘From Zero to 
Transfinity’ how Lucas had developed a method two years earlier for determining which Mersenne 
numbers are prime or composite. In this paper, he went further, introducing a general second-order linear 
recurrence equation: 

𝑥" = 𝑃 ∙ 𝑥"E$ − 𝑄 ∙ 𝑥"EA 
where P and Q are the relatively prime coefficients of this quadratic equation: 

𝑥A − 𝑃𝑥 + 𝑄 = 0 
This is called a characteristic polynomial in linear algebra51 (which we look at in Chapter 5, to be written 

in the next year), whose roots a and b are the eigenvalues of this matrix M, with determinant Q: 
𝑀 = G𝑃 −𝑄

1 0 H 

giving 

𝑎 =
𝑃 + √𝐷
2 														and												𝑏 =

𝑃 − √𝐷
2 															 

where 𝐷 = 𝑃A − 4𝑄 = (𝑎 − 𝑏)A, called the discriminant of the polynomial. Expressing P and Q in terms 
of a and b gives, as for any quadratic equation: 

𝑃 = 𝑎 + 𝑏											and											𝑄 = 𝑎𝑏 
Lucas then defined a pair of complementary sequences, similar to ones that Jacques Philippe Marie 

Binet (1786–1856) had defined in 1843:52 

𝑈" =
𝑎" − 𝑏"

𝑎 − 𝑏 ,			𝑉" = 𝑎" + 𝑏" 

We can define Vn in terms of Un in this way, for a ≠ b and n > 0: 

𝑉" = 𝑎" + 𝑏" =
(𝑎" + 𝑏")(𝑎" − 𝑏")

𝑎" − 𝑏" =
𝑎A" − 𝑏A"

𝑎" − 𝑏" =
𝑈A"
𝑈"

 

Also, for a ≠ b and n > 0: 
(𝑎 − 𝑏)𝑉" = (𝑎 − 𝑏)(𝑎" + 𝑏") = 𝑎"e$ + 𝑎𝑏" − 𝑏𝑎" − 𝑏"e$ = 𝑎"e$ − 𝑏"e$ − 𝑎𝑏(𝑎"E$ − 𝑏"E$) 

So, when 𝑄 = 𝑎𝑏 = −1, we have: 

𝑉" = 𝑎" + 𝑏" =
𝑎"e$ − 𝑏"e$

𝑎 − 𝑏 +
𝑎"E$ − 𝑏"E$

𝑎 − 𝑏 = 𝑈"e$ + 𝑈"E$ 
Setting n = 0 and 1 in the formulae for Un and Vn gives this general pair of second-order linear 

recurrence equations, generating Lucas sequences:53 
𝑈" = 𝑃 ∙ 𝑈"E$ − 𝑄 ∙ 𝑈"EA							𝑈d = 0,				𝑈$ = 1 
𝑉" = 𝑃 ∙ 𝑉"E$ − 𝑄 ∙ 𝑉"EA									𝑉d = 2,				𝑉$ = 𝑃 

 
Looking now at some particular cases, when (𝑃, 𝑄) = (1,−1), we have the famous Fibonacci sequence 

(Fn) and its complementary sequence of what are today called Lucas numbers (Ln), with these simple 
recurrence equations: 

𝐹" = 𝐹"E$ + 𝐹"EA																	𝐹d = 0,					𝐹$ = 1 
𝐿" = 𝐿"E$ + 𝐿"EA																	𝐿d = 2,					𝐿$ = 1 

Here are the first few terms generated from these equations: 
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OEIS 0 1 2 3 4 5 6 7 8 9 10 
A000045 0 1 1 2 3 5 8 13 21 34 55 
A000032 2 1 3 4 7 11 18 29 47 76 123 

In this case, the discriminant D is 5 and the roots a and b of the characteristic equation are: 
1 ± √5
2  

 
The positive root is the familiar Golden Ratio, also called Golden Mean54 or Golden Section, influenced 

by Euclid’s definition: “A straight line is said to have been cut in extreme and mean ratio when, as the 
whole line is to the greater segment, so is the greater to the less,”55 illustrated here: 

 
Influenced by what the Italian painter Piero della Francesca (c. 1415–1492) called the Divine 

Proportion,56 in 1509 the Italian mathematician Luca Pacioli (c. 1447–1517) published a book titled De 
Divina Proportione, illustrated by his friend Leonardo da Vinci (1452–1519), 
describing thirteen properties.57 For instance, the Divine Proportion is evident in 
the pentagram, known to the Pythagoreans, although it wasn’t until 1835 that 
Martin Ohm—the brother of George Simon Ohm, who gave his name to Ohm’s 
law in electromagnetism—applied the honorific epithet Golden to the Divine 
Proportion.58 In mathematical terms, the Golden Section is simply defined by this 

equation: 
𝑥 + 1
𝑥 =

𝑥
1 

giving  
𝑥A = 𝑥 + 1 

which is Lucas’s characteristic equation for (𝑃, 𝑄) = (1,−1). 
In professional mathematical literature, the Golden Ratio is denoted by tau (τ), from Greek tomos ‘a 

cutting, section’, from temnein ‘to cut’, root of atom (not-cut), tome, and tomography. However, at the 
beginning of the twentieth century, Mark Barr (1871–1950) denoted the Golden Ratio with phi (φ), the 
initial letter of the sculptor Phidias (c. 490–430 BCE),59 and this is how it is most popularly symbolized 
today. The negative root is 1 - φ, often called psi (ψ). 

 Johannes Kepler was well aware of the Divine Proportion, 
helping him greatly in his quest to discover the unifying 
harmony that underlies geometry, music, poetry, architecture, 
and astronomy, enabling him to discover the small and great 
stellated dodecahedra in 1619 in Harmonices Mundi (The 
Harmony of the World).60 

Earlier, Kepler had become became fascinated by the Divine Proportion in 1594, when he was 
appointed District Mathematician in Graz despite studying theology at Tübingen University.61 During 
the next three years, he wrote Mysterium Cosmographicum (The Secret of the Universe),62 saying, “Geometry 
has two great treasures; one is the Theorem of Pythagoras; the other, the division of a line into extreme 
and mean ratio. The first we may compare to a measure of gold; the second we may name a precious 
jewel.”63  

Then in The Six-Cornered Snowflake in 1611, Kepler wondered why in most trees and bushes their 
flowers unfold in a five-sided pattern, with five petals, turning again to the Divine Proportion to explain 
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this natural phenomenon. In particular, he noticed that the ratio of consecutive terms in the sequence 1, 1, 
2, 3, 5, 8, 13, 21 approaches a constant value, saying, “It is in the likeness of this self-developing series that 
the faculty of propagation is, in my opinion, formed,” foreseeing mathematics as a generative science of 
patterns and relationships emerging directly from the Divine Origin of the Universe, as this book is 
demonstrating. Kepler noted, “it is impossible to provide a perfect example in round numbers. However, 
the further we advance from the number one, the more perfect the example becomes.”64 

However, it was to take another century or two before mathematicians discovered: 

lim
"→�

𝐹"e$
𝐹"

=
1 + √5
2 = φ 

From this and the definition of Un, we have this monstrous expression: 

𝐹" =
𝜙" − 𝜓"

𝜙 − 𝜓 =
1
√5

��
1 + √5
2 �

"

− �
1 − √5
2 �

"

� 

This formula is usually credited to Binet, although it was well understood more than a century earlier 
than 1843 by Abraham de Moivre (1667–1754), Daniel Bernouilli (1700–1782), and Leonhard Euler (1707–
1783).65 It is a rather strange formula, for Fn is an integer, and the right-hand side does not appear to be 
so. However, the root-fives cancel out for all values of n. So all is well. 

From this, we can determine the nth Lucas number: 

𝐿" = 𝐹"E$ + 𝐹"e$ = 𝜙" + 𝜓" = �
1 + √5
2 �

"

+ �
1 − √5
2 �

"

 

 
The Fibonacci sequence is so named because Lucas attributed Leonardo Fibonacci to the Lucas 

sequence for (P, Q) = (1, -1) in his seminal paper.66 However, Leonardo Pisano was not the first to 
discover this sequence. It seems that it first appeared in Chandahshāstra ‘The Art of Prosody’, by the 
Sanskrit grammarian Pingala, sometime between 450 and 200 BCE,67 later being associated with a number 
of other Indian thinkers, all of whom lived and worked before Leonardo.68 

Fibonacci’s famous puzzle about rabbits is contained in the extensive Chapter 12 of Liber Abbaci (Book 
of Calculation) from 1228, the only edition that is extant, written to illustrate the power of the Indo-Arabic 
notation for numbers, as described in Chapter 3. Fibonacci presented 259 worked examples in this 
chapter,69 the problem that led to Fibonacci becoming widely known in popular culture lying between a 
technique to find perfect numbers and a puzzle about the numbers of denari four men each hold, when 
the totals of three of them are known. Regarding the former, having found the first three perfect 
numbers, Leonardo wrote, “always doing thus you will be able to find perfect numbers without end,”70 not 
realizing that the method breaks down with the fifth prime number, as we see in Chapter 3. 

Fibonacci rather whimsically asked ‘How Many Pairs of Rabbits Are Created by One Pair in One 
Year’, beginning his investigation with this statement, in L. E. Sigler’s translation:71 

A certain man put one pair of rabbits in a certain place, and one wishes to know how many are created from the pair in 
one year when it is the nature of them in a single month to bear another pair, and in the second month those born to 
bear also.  
David M. Burton provides this translation,72 similar to a number of others I have seen in the literature: 
A man put one pair of rabbits in a certain place entirely surrounded by a wall. How many pairs of rabbits can be 
produced from that pair in a year, if the nature of these rabbits is such that every month each pair bears a new pair 
which from the second month on becomes productive? 
Fibonacci provided a table of his calculations in the margin of his book, telling us how he calculated 

the number of rabbits in the field after twelve months of breeding.73 As you can see, at the end of the first 
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month, he thought that there would be two rabbits, while there would only be one, unless 
the rabbits had begun to breed one month before being put into the field. So, at the end of 
the twelfth month, there should have been 233 rabbits in total. Furthermore, what we call 
F2 today was the zeroth term in his sequence. So 377 is actually F14 rather than F12. One 
other unique property of the Fibonacci sequence is that because of the way it is formed, the 
partial sum of the first n terms is 𝐹"eA − 1.74 This is almost as if the sequence contains its 
own gnomons within it. 

However, as the way that Fibonacci formulated the problem 
cannot be extended indefinitely in a biological sense, Conway and Guy 
suggested that another way of looking at the problem of breeding rabbits is by 
wondering how many pairs of rabbits would be produced in the nth generation, 
starting from a single pair and supposing that any pair of rabbits of one 
generation produces one pair of rabbits for the next generation and one for the 
generation after that, and then they die, providing the hierarchical schema on 
the right.75 

Alternatively, in The Divine Proportion and The Golden Ratio, respectively, 
H. E. Huntley and Mario Livio suggest 
that a more appropriate biological metaphor is of that of honey 
bees, in which males, as drones, are born from unfertilized eggs, 
and so have only the queen as a parent, while female bees, 
including workers, have both female and male parents.76 The 
number of female, male, and all bees in each generation follows a 
Fibonacci sequence. T. C. Scott and P. Marketos provide this 

ancestor tree of this model, pointing out that beeswax was a major commodity in Bugia (Béjaïa in modern 
Algeria),77 where Leonardo moved as a youth to be with his father, acting as a ‘public official’, as he tells 
us in his brief autobiography.78 However, whether Fibonacci had this reproductive system of bees in his 
subconscious mind when formulating his puzzle seems rather unlikely. 

Be that as it may, these complementary graphs, as illustrations of the underlying structure of the 
Cosmos, are examples of evolutionary hierarchies in Integral Relational Logic, defined in Chapter 2. 
Fibonacci did not envisage rabbits emerging from our Divine Source, as Emptiness. Nevertheless, by 
Lucas defining F0 = 0, this is just how mysticism and mathematics can be seen as an inseparable pair of 
opposites. 

 
We’ll later look further at the Fibonacci sequence in their appearance in spirals. But first, let us look at 

another pair of Lucas sequences. When (𝑃, 𝑄) = (2,−1), what are called Pell (Pn) and Pell-Lucas (Qn) 
sequences are generated: 

OEIS 0 1 2 3 4 5 6 7 8 9 10 
A000129 0 1 2 5 12 29 70 169 408 985 2,378 
A002203 2 2 6 14 34 82 198 478 1,154 2,786 6,726 

In this case, the discriminant D is 8 and the roots a and b of the characteristic equation are: 
1 ± √2 

giving 

beginning 1 
first 2 

second 3 
third 5 

fourth 8 
fifth 13 
sixth 21 

seventh 34 
eighth 55 
ninth 89 
tenth 144 

eleventh 233 
end 377 
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𝑃" =
1
2√2

��1 + √2�
"
− �1 − √2�

"
� 

𝑄" = �1 + √2�
"
+ �1 − √2�

" 
The positive root is called the Silver Ratio, denoted by 𝛿�. Here are a couple of diagrams illustrating 

the Golden and Silver Ratios geometrically, as the ratios of diagonals to the sides of regular pentagons 
and octagons, respectively. The upright isosceles triangle in the pentagon is called the Golden Triangle 
and the other two triangles are Golden Gnomons.79  

  
 

Now, while Pell’s numbers provide a convergent sequence to the value of 1 + √2 through this limit: 

lim
"→�

𝑃"e$
𝑃"

= 1 + √2 

to obtain a convergent sequence to the value of √2 itself, we need to set d = 2 in Pell’s equation, which 
has an ancient history, long before Euler misattributed Pell’s name to this Diophantine equation, whose 
integer solutions lead to approximations for √𝑑: 

𝑥A − 𝑑𝑦A = 1 
√2 is known today as Pythagoras’s Constant because it is the measure of the hypotenuse of an isosceles 

right-angled triangle whose equal sides are of length 1.80 Leonard Eugene Dickson tells us in History of 
the Theory of Numbers that the Indians and Greeks found approximations to √2 and other surds as early as 
400 BCE.81 However, it was to take about a thousand years before Brahmagupta found a method for 
finding a sequence of solutions to Pell’s equation in 628 CE and another 1000 years before Fermat, known 
today as the founder of modern number theory,82 issued a challenge to European mathematicians in 1657 
to find general solutions, not aware of Brahmagupta’s brilliant work and that of other Indian 
mathematicians who followed him.83 

William Brouncker (1620–1684), who was to become the first president of the Royal Society of 
London, quickly found a solution using continued fractions, which John Wallis (1616–1703) published in 
1658. In the same year, Johann Rahn (1622–1676), who was the first to use the symbol ÷ for division,84 
published an algebra book with the assistance of John Pell (1611–1685),85 which contained an example of 
Pell’s equation. This is only known connection between Pell and the equation that has been named after 
him. It is generally believed that Euler gave it that name around 1732 because he confused Brouncker and 
Pell, thinking that the major contributions which Wallis had reported on as due to Brouncker were in fact 
the work of Pell.86 As H. W. Lenstra Jr. says, “attempts to change the terminology introduced by Euler 
have always proved futile.” 87 

Turning now to solutions of Pell’s equation, Lenstra says that because we can rewrite Pell’s equation as 
(𝑥 + 𝑦√𝑑) ∙ (𝑥 − 𝑦√𝑑) = 1 
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finding a solution comes down to finding a nontrivial unit of the ring ℤ[√𝑑] of norm 1. This makes 
intuitive sense, even though, at the time of writing, I don’t fully understand how to interpret ℤ[√𝑑]. 
Nevertheless, viewing (𝑥 + 𝑦√𝑑) and (𝑥 − 𝑦√𝑑) as norms of value 1 in linear algebra, it is not difficult to see 
that the nth solution (an, bn) can be expressed in terms of the fundamental solution (a1, b1), with (a0, b0) 
being the trivial one (1, 0), thus: 

𝑎" + 𝑏"√𝑑 = (𝑎$ + 𝑏$√𝑑)" 
Derek Smith provides an elegant proof by induction of this relationship,88 showing that 

𝑎"e$ = 𝑎$𝑎" + 𝑏$𝑏"𝑑 
𝑏"e$ = 𝑏$𝑎" + 𝑎$𝑏" 

In this way 
√𝑑 = lim

"→�

𝑎"
𝑏"

 

Wolfram MathWorld gives the smallest integer solutions to Pell’s equation as (a1, b1), which is 
sometimes the same as the first convergent of the continued fraction expansion of √𝑑, using the algorithm 
for finding the continued fractions of square roots, described in Chapter 3. For d = 2, Pell’s recurrence 
equations give these sequences for (an, bn), which converge much faster than the convergents of the 
continued fraction for √2: 

OEIS 0 1 2 3 4 5 6 7 8 9 10 
A001541 1 3 17 99 577 3363 19601 114243 665857 3880899 22619537 
A001542 0 2 12 70 408 2378 13860 80782 470832 2744210 15994428 

Here is a table of the first few convergents of the first few values of √𝑑, with √7 having a better 
starting value (8/3) than 3/1, as the first convergent of the continued fraction for √7. 

√𝑑 OEIS 1 2 3 4 5 6 

√2 
A001541
A001542 

3
2 

17
12 

99
70 

577
408 

3363
2378 

19601
13860 

√3 
A001075
A001353 

2
1 

7
4 

26
15 

97
56 

362
209 

1351
780  

√5 
A023039
A060645 

9
4 

161
72  

2889
1292 

51841
23184 

930249
416020 

16692641
7465176  

√6 
A001079
A001078 

5
2 

49
20 

485
198 

4801
1960 

47525
19402 

470449
192060 

√7 
A001081
A001080 

8
3 

127
48  

2024
765  

32257
12192 

514088
194307 

8193151
3096720 

√8 
A001541
A001109 

3
1 

17
6  

99
35 

577
204 

3363
1189 

19601
6930  

√10 
A078986
A084070 

19
6  

721
228 

27379
8658  

1039681
328776  

39480499
12484830 

1499219281
474094764  

If you are a young man in a hurry, we also can define: 
𝑎"e$ + 𝑏"e$√𝑑 = (𝑎" + 𝑏"√𝑑)A 

giving: 
𝑎"e$ = 𝑎"A + 𝑏"A𝑑 
𝑏"e$ = 2𝑎"𝑏" 

Here are the first few convergents for √2 and √3 with this algorithm: 

√𝑑 OEIS 1 2 3 4 5 

√2 
A001601
A051009 

3
2 

17
12 

577
408 

665857
470832 

886731088897
627013566048 
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√𝑑 OEIS 1 2 3 4 5 

√3 
A002812
A071579 

2
1 

7
4 

97
56 

18817
10864 

708158977
408855776 

These sequences arise from Newton’s iteration, an algorithm for computing √𝑛, as an application of 
Newton’s method, also called the Newton-Raphson method, for finding approximate roots for 
polynomials from a guesstimate of the first value.89 In this case, the convergents are not particularly 
sensitive to the initial values; they converge just as fast. 

 
Returning to Lucas sequences, so far, we have looked at two examples of (𝑃, 𝑄) = (𝑘,−1), with k = 1 

and 2, giving the Golden and Silver Ratios. Naturally, this gives rise to another sequence of sequences, 
which Ron Knott calls silver means,90 related to simple continued fractions where an = k for all n. For, in 
this case, we can rewrite the characteristic polynomial as  

𝑥 = 𝑘 +
1
𝑥 = 𝑘 +

1

𝑘 + 1𝑥
= 𝑘 +

1

𝑘 + 1
𝑘 + 1

⋱

 

The positive root a of the characteristic polynomial is then: 

𝑎 =
𝑘 + √𝑘A + 4

2 = �𝑘;𝑘�� 

with the negative of the negative root b being the fractional part of a, for 

−𝑏 = 𝑎 − 𝑘 =
1
𝑎 

The discriminant 𝐷 = 𝑘A + 4 has this recurrence equation for k ≥ 0: 

𝑑"e$ = 𝑑" + 𝑛 + 1																											𝑑d = 4				
giving this sequence for the discriminant, including the degenerate case when k = 0: 

OEIS 0 1 2 3 4 5 6 7 8 9 10 11 12 
A087475 4 5 8 13 20 29 40 53 68 85 104 125 148 

Vera W. de Spinadel (1929–2017) has called the sequence of positive roots a formed from discriminant 
D a family of metallic means, from Golden and Silver to Bronze, Copper, Nickel and so on.91 However, 
even though there is a Wikipedia page on the subject,92 it is uncertain to what extent these terms are 
generally acceptable within the mathematical community. 

 In general, when (𝑃, 𝑄) = (𝑘,−1), we have these three convergent limits: 

lim
"→�

𝑈"e$
𝑈"

= lim
"→�

𝑉"e$
𝑉"

= 𝑎 

lim
"→�

𝑉"
𝑈"

= 𝑎 − 𝑏 = 𝑎 +
1
𝑎 

Also, when (𝑃, 𝑄) = (𝑘,−1), there is a close relationship between successive terms in a primary Lucas 
sequence and the matrix form M of the characteristic equation, expressing such sequences as powers of 
matrices:93 

J𝑈"e$ 𝑈"
𝑈" 𝑈"E$

K = G𝑘 1
1 0H

"
= 𝑀" 

Here are the matrices for the first five values of n, whose determinants are all 1, for that of the initial 
matrix is 1:94 

G𝑘 1
1 0H G𝑘

A + 1 𝑘
𝑘 1

H J𝑘(𝑘
A + 2) 𝑘A + 1

𝑘A + 1 𝑘
K �𝑘

F + 3𝑘A + 1 𝑘(𝑘A + 2)
𝑘(𝑘A + 2) 𝑘A + 1

� �𝑘(𝑘
F + 4𝑘A + 3) 𝑘F + 3𝑘A + 1

𝑘F + 3𝑘A + 1 𝑘(𝑘A + 2)
� 

Here is a table for the next few values of k: 
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k OEIS 0 1 2 3 4 5 6 7 8 9 10 

3 A006190 0 1 3 10 33 109 360 1,189 3,927 12,970 42,837 
A006497 2 3 11 36 119 393 1,298 4,287 14,159 46,764 15,4451 

4 A001076 0 1 4 17 72 305 1,292 5,473 23,184 98,209 416,020 
A014448 2 4 18 76 322 1,364 5,778 24,476 103,682 439,204 1,860,498 

5 — 0 1 5 26 135 701 3,640 18,901 98,145 509,626 2,646,275 
A087130 2 5 27 140 727 3,775 19,602 101,785 528,527 2,744,420 14,250,627 

 
Briefly looking at other values of Q, the most significant is (𝑃, 𝑄) = (3, 2), giving D = 1, a = 2, and 

b = 1. We then have the first example that Lucas included in his seminal paper, generating sequences that 
relate to the Mersenne and Fermat numbers: 

OEIS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
A000225 0 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 
A000051 2 3 5 9 17 33 65 129 257 513 1025 2049 4097 8193 16385 32769 65537 131073 

Here, the nth Mersenne number is 2" − 1, which is called a Mersenne prime when n is prime (OEIS 
A001348), mostly marked in yellow, although, as we saw in Chapter 3, very few of the Mersenne primes 
are actually prime (OEIS A000688), the first exception being n = 11, marked in pink. 

The nth term in the complementary sequence is 2" + 1, marked in green, which is a subset of the 
Fermat numbers, which have the form, where m = n - 1 for n > 0: 

𝐹5 = 2An + 1 
Now, when 𝑃A = 4𝑄, D = 0, and the Lucas sequences are degenerate, with a = b = S, giving P = 2S 

and Q = S2. The nth terms of the sequences then become: 
𝑈"(𝑃,𝑄) = 𝑈"(2𝑆, 𝑆A) = 𝑛𝑆"E$ 
𝑉"(𝑃,𝑄) = 𝑉"(2𝑆, 𝑆A) = 2𝑆" 
So, when S = 1, 𝑈"(2, 1) are the noninteger natural numbers and 𝑉"(2, 1) is just a sequence of twos. 

Catalan sequence 
Next, we look at Catalan numbers, which appear frequently in enumerative combinatorics, named after 
Eugène Charles Catalan (1814–1894), although he wasn’t the first to discover them, any more than Pell 
solved Pell’s equation or Binet found Binet’s formula, one of many examples of Stigler’s Law of 
Eponymy, which states that that no scientific or mathematical discovery is named after its original 
discoverer.95  

Catalan numbers, in particular, and enumerative combinatorics, in general, typify mathematics as a 
generative science of patterns and relationships, appearing in many different guises. As these patterns are 
ubiquitous, it is therefore not easy to define what combinatorics actually is or how it has evolved as a 
distinct branch of mathematics. Indeed, combinatorics is not mentioned in Carl B. Boyer’s A History of 
Mathematics or in David M. Burton’s The History of Mathematics. However, in A History of Mathematics, 
Victor J. Katz tells us that the earliest recorded statements of combinatorial rules appeared in India as 
early as the sixth century BCE, with a sixth century CE work by Varāhamihira calculating the binomial 
coefficient 𝐶F$N , the number of different perfumes that could be created using four ingredients chosen 
from sixteen. Then, in the ninth century, Mahāvīra found the general formula for 𝐶c" .96 

After the Arabs later studied the ways to count combinations97 and Leonardo Pisano introduced Indo-
Arabic numerals into Europe, the first mention of combinatorics, as such, was a youthful 1666- 
dissertation that Gottfried Wilhelm Leibniz (1646–1716) wrote titled Dissertatio de arte combinatoria 
(Dissertation on the Art of Combinations). This work illustrates the fundamental nature of Leibniz’s 
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thinking, as it contains the germ of the plan for a universal characteristic and logical calculus,98 a notion 
much more extensive and profound than what is regarded as combinatorics today.99 This led to Leibniz’s 
lifetime quest to develop a universal language that could embrace the whole of human reasoning, as I 
briefly mention in my 2013 book The Theory of Everything: Unifying Polarizing Opposites in Nondual 
Wholeness, explored further in Chapter 5. 

In the event, George Boole, initially not knowing about Leibniz’s musings, wrote Laws of Thought, 
which laid down the foundation of mathematical logic, published in 1854, which led to the invention of 
the stored-program computer in the late 1940s. In turn, this led to Ted Codd’s relational model of data in 
1970, the inspiration for the development of Integral Relational Logic, as the taxonomy of taxonomies, 
emphasizing the conceptual models or cognitive maps that underlie language, dwelling in the Cosmic 
Psyche, as I describe in Chapters 1 and 2 in this book. 

So what is combinatorics today, and how has it evolved since Percy A. MacMahon (1854–1929) wrote 
an early major treatise on Combinatory Analysis, published in two volumes in 1915 and 1916? MacMahon 
introduced combinatory analysis as lying between algebra and higher arithmetic,100 later explaining that 
the meaning of the latter is what was called in 1958 the Theory of Numbers, today simply Number Theory. 
This was the explanation of John Riordan (1903–1988) in An Introduction to Combinatorial Analysis in 1958, 
saying that while combinatorial analysis is a well-recognized part of mathematics, it seems to have a 
poorly defined range and position, it not being clear at the time “to what is and what is not 
combinatorial”. He resolved his problem by saying, “anything enumerative is combinatorial; that is … on 
finding the number of ways there are of doing some well-defined operation.”101 

Nevertheless, in 1963 in Combinatorial Mathematics, Herbert John Ryser (1923–1985) still felt the need 
to begin this comparatively short monograph by asking the question “What is combinatorial 
mathematics?” As he said, “combinatorial mathematics cuts across many subdivisions of mathematics, and 
this makes a formal definition difficult.” However, he did distinguish two basic characteristics in the 
literature: first to determine the existence of a prescribed configuration and secondly to enumerate the 
classification of these configurations according to types.102 In other words, sets are a more fundamental 
notion than numbers, and until the definitions of the former are established, there is nothing meaningful 
to count. 

Then, in 1997, Richard P. Stanley began his definitive 2-volume, 1200-page textbook on Enumerative 
Combinatorics by answering the question “What is enumerative combinatorics?” in this way: “The basic 
problem of enumerative combinatorics is that of counting the number of elements of a finite set.” But, as 
the basic building blocks of mathematics are sets and numbers, isn’t that what all of mathematics is 
about? Well, from a combinatorist’s perspective, things are not quite that simple. As Stanley tells us, there 
is no definitive answer to the question, “What does it mean to ‘count’ the number of elements of [set] Si?” 
As he says, it is only through experience that one can “develop an idea of what is meant by a 
‘determination’ of a counting function f(i)”. 

Experience, then is essential. Just as one cannot understand what philosophy is by watching 
philosophers think or even by reading their writings, as Antony Flew (1923–2010) pointed out in 
Philosophy: An Introduction,103 to understand combinatorics it is necessary to engage in the practices of 
combinatorists. Thus, we could say that combinatorics is what combinatorists do, just as philosophy is 
what philosophers do. 

For myself, not having studied combinatorics or any other branch of mathematics in any detail since I 
graduated in 1964, all I can do to paint a coherent picture of mathematics as a whole in the context of all 
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knowledge is to explore the various constructs that combinatorists study and their relationships to similar 
structures in graph theory, geometry, abstract algebra and group theory, linear algebra and matrix theory, 
category theory, and even topology, for instance. For all these branches of mathematics, as branches, and 
the constructs that they study, are aspects or instances of the underlying structure of the Cosmos, as a 
multidimensional network of hierarchical relationships. 

The challenge I face in studying combinatorics, or any other subject for that matter, is that specialists 
are not generally aware that they are implicitly using Integral Relational Logic to form concepts and 
organize their ideas in semantic networks, mathematical graphs, and tables, such as relations and 
matrices. So, as this picture is emerging from the Datum of the Cosmos in the psyche, as a cognitive map 
or conceptual model, after I write Chapter 5 on ‘Universal Algebra’, I will probably need to return to this 
chapter, making any clarifying revisions, as necessary. 

 
In the meantime, let us take a look at the fascinating Catalan numbers, which Igor Pak tells us had a 

rather chaotic history until they were understood reasonably well.104 Although it is today acknowledged 
that Ming Antu (c. 1692–c. 1763), a Mongolian scholar working in China during the Qing dynasty, 
discovered the Catalan numbers (in infinite series) around 1730,105 they first appeared in Europe as 
‘Euler’s Polygon Division Problem’ about twenty years later. This asks in how many ways En can a planar 
convex polygon of n sides be divided into triangles by nonintersecting diagonals, where En= Cn-2, as the 
Catalan number. For instance, with n = 3, 4, and 5, En is 1, 2, and 5, as these diagrams illustrate. 

             
In those cases, they are all essentially the same because of rotational symmetry. However, with 

hexagons, there are three basic types, discounting rotational and reflective symmetry, giving E6 = 14. 

       

       
To keep the diagrams as simple as possible, when n = 7 and 8, there are 4 and 12 distinct patterns, and 

En = 42 and 132. 

  

  
But what is the pattern here? Well, this was not immediately obvious to Euler in 1751, when he wrote 

to Christin Goldbach (1690–1764) about the problem. Rather laboriously, Euler found values for En up to 
n = 10, as in this table (OEIS A000108), “probably the longest entry in the OEIS”,106 as these numbers 
“are probably the most frequently occurring combinatorial numbers after the binomial coefficients”:107 
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n 3 4 5 6 7 8 9 10 
En 1 2 5 14 42 132 429 1,430 

From this sequence of numbers, Euler surmised that the general formula is given by:  

𝐸" =
2 ∙ 6 ∙ 10 ∙ 14 ∙ 18 ∙ 22…(4𝑛 − 10)

2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7… (𝑛 − 1)  

Then in the late 1750s, Euler wrote to Johann Andreas von Segner (1704–1777), originally a physician, 
about the problem, who published a recurrence equation in Latin in 1758 for generating values of En, 
setting E2 = 1, for the degenerate polygon as a line in two dimensions:108 

𝐸" = 𝐸A𝐸"E$ + 𝐸B𝐸"EA +⋯+ 𝐸"E$𝐸A = :𝐸c𝐸"Ece$

"e$

c=A

 

Here is a ‘Catalan triangle’, showing how the Catalan numbers are generated from this recurrence 
equation: 

C0 E2        1        = 1 
C1 E3        1∙1        = 1 
C2 E4       1∙1 + 1∙1       = 2 
C3 E5      1∙2 + 1∙1 + 2∙1      = 5 
C4 E6     1∙5 + 1∙2 + 2∙1 + 5∙1     = 14 
C4 E7    1∙14 + 1∙5 + 2∙2 + 5∙1 + 14∙1    = 42 
C6 E8   1∙42 + 1∙14 + 2∙5 + 5∙2 + 14∙1 + 42∙1   = 132 
C7 E9  1∙132 + 1∙42 + 2∙14 + 5∙5 + 14∙2 + 42∙1 + 132∙1  = 429 
C8 E10 1∙429 + 1∙132 + 2∙42 + 5∙14 + 14∙5 + 42∙2 + 132∙1 + 429∙1 = 1430 

Omitting the single 1 above the vertex, each element in the triangle T(n, k) is the product of two 
Catalan numbers (OEIS A078391), where n ≥ 0 and 0 ≤ k ≤ n: 

 		

We can illustrate how this recurrence equation is formed from the way that the dissections of an 
octagon can be shown in terms of previous values of En. These diagrams show six ways of dividing the 
octagon into smaller polygons, with either a line or triangle between them. From these, we can calculate 
E8. 

      
1∙42=42 1∙14=14 2∙5=10 5∙2=10 14∙1=14 42∙1=42 

This is where the matter rested for the next eighty years, until Olry Terquem (1782–1862) asked Joseph 
Liouville (1809–1882) in 1838 if he knew a simple way to derive Euler’s product formula from Segner’s 
recurrence equation. Liouville circulated the question among his geometric associates, soon receiving an 
elegant solution in a letter from Gabriel Lamé (1795–1870), which Liouville promptly published in Journal 
de Mathématiques Pures et Appliquées,109 which he had founded two years earlier. 

Lamé, professor of physics at the prestigious École Polytechnique in Paris, solved this problem by 
looking at polygon triangular divisions in two ways: in terms of the edges and vertices of the polygon. The 
former gives Segner’s recurrence equation, as we see in the example above, which Lamé wrote as:110 

𝐸B𝐸"E$ + 𝐸F𝐸"EB +⋯+ 𝐸"EA𝐸F + 𝐸"E$𝐸B = 𝐸"e$ − 2𝐸" 
When looking at the problem from the perspective of a vertex, noting that solutions were counted 

multiple times, Lamé derived this formula: 

𝐸B𝐸"E$ + 𝐸F𝐸�EB +⋯+ 𝐸"EA𝐸F + 𝐸"E$𝐸B =
2𝑛 − 6
𝑛 𝐸" 

T (n,k) = Cn ×Cn−k
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Hence: 

𝐸"e$ − 2𝐸" =
2𝑛 − 6
𝑛 𝐸" 

Which proves this simple recurrence equation, a proof that had eluded mathematicians for nearly a 
century: 

𝐸"e$ =
4𝑛 − 6
𝑛 𝐸"																											𝐸A = 1 

At this, the flood gates were opened. Later that year, Olinde Rodrigues (1795–1851), a banker, produced 
an inductive proof of the recurrence equation and most significantly, Catalan, before himself obtaining a 
post at École Polytechnique and before he had received a degree, found another simple formula for the 
polygon division problem.111 First, by expanding En+1 as: 

𝐸"e$ =
𝑛(𝑛 + 1)(𝑛 + 2)…(2𝑛 − 2)

2 ∙ 3 ∙ 4 ∙ … ∙ 𝑛  

he immediately saw that  

𝐸"eA =
1

𝑛 + 1
J
2𝑛
𝑛
K = G1 −

𝑛
𝑛 + 1H

J
2𝑛
𝑛
K = J

2𝑛
𝑛
K − J

2𝑛
𝑛 − 1

K =
(2𝑛)!

(𝑛 + 1)! 𝑛! =
1

𝑛 + 1
J
2𝑛
𝑛
K 

For Catalan also noticed at once that as �A"" � is an expression of the central binomial coefficients in 
Pascal’s triangle, defined on page 199, if these (1, 2, 6, 20, 70, 252, 924, …) are divided by the natural 
numbers (1, 2, 3, 4, 5, 6, 7, …), one obtains: 1, 1, 2, 5, 14, 42, 132, …. So, setting n = n + 2 in Lamé’s 
recurrence equation, the recurrence equation for the Catalan numbers is:112 

𝐶"e$ =
2(2𝑛 + 1)
𝑛 + 2 𝐶"																								𝐶d = 1 

In summary, here is a table of the first few Catalan numbers and their relationships to Catalan’s 
formula. The first row is the sequence of central binomial coefficients (Tn), denoting the total of all ways 
of choosing n from 2n possibilities, while the second (Xn) denotes the number of instances that are 
excluded, by the definition of the constructs. The table, which becomes clearer when we look at other 
constructs that generate Catalan numbers, lists ratios between these sequences as irreducible fractions, 
plus, for completeness, the associated unique polygon triangulation numbers disregarding rotational and 
reflective symmetries for regular (n+2)-gons. 

OEIS ID 0 1 2 3 4 5 6 7 8 9 10 
A000984 Tn 1 2 6 20 70 252 924 3,432 12,870 48,620 184,756 
A001791 Xn 0 1 4 15 56 210 792 3,003 11,440 43,758 167,960 
A000108 Cn= Tn- Xn 1 1 2 5 14 42 132 429 1,430 4,862 16,796 

— Xn/Tn 
0
1 

1
2 

2
3 

3
4 

4
5 

5
6 

6
7 

7
8 

8
9 

9
10 

10
11 

— Cn+1/Cn 1 2 2
1
2 2

4
5 3 3

1
7 3

1
4 3

1
3 3

2
5 3

5
11 3

1
2 

A000207 Un 1 1 1 3 4 12 27 82 228 733 2,282 

As you can see, the proportion of instances that are invalid grows as n/n+1, giving the maximum 
growth rate of the Catalan numbers as: 

lim
"→�

𝐶"e$
𝐶"

= lim
"→�

2(2𝑛 + 1)
𝑛 + 2 = 4 

So, while the sequence of Catalan numbers converges to infinity, its rate of growth is limited to a small 
finite value, an example of evolution under constraint. Another such example is the discrete logistic map, 
which I used in my 2016 book Through Evolution’s Accumulation Point to explain why 13.8 billion years of 
evolution are degenerating into political chaos at the moment. It is interesting to note that the maximum 
rate of growth of this nonlinear difference equation is also four. Is this just a coincidence? 
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I ask this question because Catalan went even further in his 1838 paper. He showed that the same 
sequence arises from what is called the bracketing or parenthesization problem: how to find the number 
of different ways Bn that completely parenthesize a product of n letters, so that there are two factors inside 
each set of parentheses. For example, for the four factors a, b, c, and d, there are five possibilities:  

((ab)c)d     (a(bc))d     (ab)(cd)     a((bc)d)     a(b(cd)). 
Such strings of characters are called ‘well-formed’ in computer science, for when writing or parsing 

expressions, opening parentheses must precede closing ones, there must never be more closing 
parentheses that opening ones in the string, and at the end, the parentheses must balance. 

Thus B4 = 5 = E5 = C3. So this way of generating the Catalan numbers is better defined in terms of 
n + 1 characters, as an example of our bifurcating Universe, one of many that have been discovered since 
then. So a humble schoolteacher, with the invaluable assistance of Lamé, was able to see patterns in these 
numbers that had eluded leading mathematicians for nearly a century. This is how the Catalan numbers 
came to be so named. Having previously been called Segner or Euler-Segner numbers, in Combinatorial 
Identities in 1968, John Riordan mentioned the term Catalan number seven times,113 which led this term to 
be adopted by the mathematical community.114 

Then, in the 1970s, when Richard P. Stanley began teaching enumerative combinatorics, he became 
aware of the ubiquity of this sequence and started to collect combinatorial interpretations of Catalan 
numbers. He published 66 examples in the second volume of his monumental Enumerative Combinatorics 
in 1999, listing 214 in 2015 in Catalan Numbers, as an extension of his Catalan Addendum web page.115 He 
considered six to be the most fundamental and gave bijective proofs between them, showing their 
equivalence, pointing out that bijective proofs between all the elements of sets of instances would require 
214 ∙ 213 = 45,582 bijections in total!116 

Such an exercise would, of course, be made much simpler by finding projections to just a few examples, 
like currency exchange rates defined in terms of a few standards, like dollars and sterling, where the 
projections between them are thoroughly proved. Stanley’s six are Euler’s polygon triangulations, 
Catalan’s parenthesization problem, binary trees, plane trees, ballot sequences, and Dyck paths, named 
after Walther von Dyck (1856–1934).117 We have already seen the first two. So here are the other four, plus 
a couple of other interesting examples. 

Binary trees are much used in computer science today. They are a type of graph, in which each node 
has at most two children, which are referred to as the left child and the right child. Stanley gives two 
examples, both of which are illustrated in this diagram from Wikipedia. 

 
First, the circles show the five possible binary trees for n = 3, effectively following the diagonals of a 

square lattice. Secondly, the diagrams as a whole show the number of complete binary trees, that is those 
in which every vertex has either zero or two children, giving 2n + 1 vertices, with n + 1 endpoints, marked 
as green moons. 

As you can see, the central binary tree is structurally different from the other four, giving rise to 
another sequence of structurally different binary trees Dn,118 different from the symmetries in the polygon 
triangular numbers. So there is not necessarily a bijection between the similar sets of Catalan sequences 
that are generated from different constructs. For reference, here are the first few terms of Dn: 
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OEIS ID 0 1 2 3 4 5 6 7 8 9 10 
A000108 Cn 1 1 2 5 14 42 132 429 1,430 4,862 16,796 
A001190 Dn  1 1 1 2 3 6 11 23 46 98 207 

Many other examples of trees generate Catalan numbers, where a plane or ordered tree T is defined 
recursively as a finite set of vertices such that:119 

a. One specially designated vertex is called the root of T, and 
b. The remaining vertices (excluding the root) are put into an ordered partition (T1, …, Tm) of m ≥ 0 pairwise disjoint, 

nonempty sets T1, …, Tm, each of which is a plane tree. 
Here are the diagrams for plane trees with n + 1 vertices and n = 3: 

 
The simplest form of the ballot problem concerns two candidates A and B for office, where n vote for 

A and n for B. In how many ways can the ballots be counted so that B is never ahead of A? To put this 
another way, if there is an urn with n white and black balls, in how many ways can the balls be drawn so 
that there are never more black balls drawn than white. Here is this solution for n = 3 once again: 

AAABBB     AABABB     AABBAB     ABAABB     ABABAB 
We can obtain such a ballot sequence directly from a bracketing, by first putting parentheses around 

the entire expression. We then replace every left parenthesis by A and each character except the last with 
a B, deleting all the right parentheses and the last character.120 Here, A is not-B, so A and B could be 
represented by any pair of opposites, such as up and down arrows (↑↓). So, we could write the above 
solution for the ballot problem like this: 

↑↑↑↓↓↓     ↑↑↓↑↓     ↑↑↓↑↓     ↑↓↑↑↓↓     ↑↓↑↓↑↓ 
This representation takes us directly to the most basic of the Dyck paths, which asks in how many 

ways can a path of length 2n cross a lattice from (0, 0) to (2n, 0) with steps (1, 1) and (1, -1), never falling 
below the x-axis. This can be presented as a mountain range, as a bijection of the ballot problem, thus: 

 
The Dyck paths lead to another version of a Catalan triangle (OEIS A001263), one of several in the 

OEIS, counting the number of diagrams with the same number of peaks:121 

C1        1        = 1 
C2       1 + 1       = 2 
C3      1 + 3 + 1      = 5 
C4     1 + 6 + 6 + 1     = 14 
C4    1 + 10 + 20 + 10 + 1    = 42 
C6   1 + 15 + 50 + 50 + 15 + 1   = 132 
C7  1 + 21 + 105 + 175 + 105 + 21 + 1  = 429 
C8 1 + 28 + 196 + 490 + 490 + 196 + 28 + 1 = 1430 

This triangle contains Narayana numbers, named after T. V. Narayana (1930–1987), who rediscovered 
them in 1955, after they were first mentioned in the two-volume Combinatory Analysis in 1916 in another 
context by MacMahon, the first major treatise on combinatorics, regarded as a classic. Narayana numbers 
N(n, k) are given by, where n ≥ 1 and 1 ≤ k ≤ n: 
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𝑁(𝑛, 𝑘) =
1
𝑘 G
𝑛
𝑘H G

𝑛
𝑘 − 1H 

The Dyck paths provide the representation of a construct that directly illustrates Catalan’s formula as 
the difference between two binomial coefficients. The number of paths from (0, 0) to (6, 0) is 20, while 
15 of them cross the x-axis, leaving just 5 paths that remain on or above the x-axis. An alternative way of 
depicting Dyck paths, which correspond to Dyck words, as in the ballot problem, is the number of paths 
from (0, 0) to (n, n) that stay either above or below the line x = y, not crossing it. 

If instead of using the letters A and B in Dyck words, we denote these opposites with 1 and 0 in binary 
notation, we obtain a sequence of binary numbers (OEIS A063171) and hence their corresponding 
decimal numbers (OEIS A014486) for all possible constructs that participate in Catalan sequences of 
whatever length the constructs might be. Here are the numbers for the first four Catalan sets. 

Catalan C0 C1 C2 C3 
OEIS n 0 1 2 3 4 5 6 7 8 

Binary 0 10 1010 1100 101010 101100 110010 110100 111000 
Decimal 0 2 10 12 42 44 50 52 56 

And here are the next terms in the sequences for Dyck words in C4 for n = 9 to 22. 
10101010 10101100 10110010 10110100 10111000 11001010 11001100 11010010 11010100 11011000 11100010 11100100 11101000 11110000 

170 172 178 180 184 202 204 210 212 216 226 228 232 240 

Antti Karttunen has created a file for these sequences up to n = 625, to C7,122 as an extension of the 
OEIS Wiki page on ‘Combinatorial interpretations of Catalan numbers’,123 including bijections between 
Dyck words, mountain ranges, binary trees, plane trees, and one other that we have not looked at yet. 
This is another geometric example, where the Catalan numbers denote the number n of nonintersecting 
chords that join 2n points on the circumference of a circle, sometimes called handshaking, although you 
would need very long arms as n increases! 

     
This example well illustrates the link between Catalan numbers and probability theory. If chords are 

drawn randomly across the circle, the number of chords is given by �A"" � of which � A""E$� cross. So the 
probability of chords not crossing is given by:  

Pr(𝑛) =
�A"" � − �

A"
"E$�

�A"" �
=
1
𝑛 

One other pattern arises from this example. As you can see, there are two distinct patterns, excluding 
rotations and reflections, different from the distinct patterns in Euler’s original triangular polygon 
problem. This sequence begins 1, 1, 2, 3, 6 and looks as it is OEIS A001405, with the next terms 10, 20, 
35, 70, 126 given by, although I have not seen a proof of this: 

𝑎(𝑛) = �
𝑛
�𝑛2 
¡ 

As a final example, these diagrams show the number of ways to stack coins in the plane, the bottom 
row consisting of n consecutive coins. 
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This interpretation of the Catalan numbers generates another ‘Catalan triangle’ (OEIS A080936), 

giving the number of constructs with a height of 1 to n. More formally, the OEIS states that T(n, k) is 
the number of Dyck paths of semilength n and height k, where 1 ≤ k ≤ n. In this case, the triangle is not 
symmetric, containing some familiar and not so familiar sequences in the diagonals. 

C1        1        = 1 
C2       1 + 1       = 2 
C3      1 + 3 + 1      = 5 
C4     1 + 7 + 5 + 1     = 14 
C5    1 + 15 + 18 + 7 + 1    = 42 
C6   1 + 31 + 57 + 33 + 9 + 1   = 132 
C7  1 + 63 + 169 + 132 + 52 + 11 + 1  = 429 
C8 1 + 127 + 482 + 484 + 247 + 75 + 13 + 1 = 1430 

 
Browsing through the OEIS sequences that mention Catalan numbers (2891 in September 2019), their 

underlying simplicity is quickly overwhelmed by complexity, which requires much study over many years 
to become assimilated in consciousness. Not only are there many interrelationships within the 
interpretations of the Catalan sequences, there are also relationships with other sequences, which I have 
not studied in any depth, knowing that they are just instances of the fundamental structure of the 
Cosmos, which I present in terms of mathematical graphs, relations, and matrices in Integral Relational 
Logic, as we see in Chapter 2. 

To illustrate these instances, two fascinating ways of arranging Catalan constructs as lattices and one 
way of presenting Catalan numbers in matrices have caught my eye. When I first came across these 
constructs, I thought that the lattices referred to meant a regularly spaced array of points, such as the 
square lattices in Dyck paths, although I could not see their relevance in this context. So, on checking 
Wolfram MathWorld and Wikipedia to clarify this concept, I discovered that such lattices should be more 
properly called ‘point lattices’, to distinguish them from the primary meaning of lattice in mathematics, 
which I was not aware of until I came to write this section in this book. 

What I have found is another astonishing story in the evolution of mathematics. Garrett Birkhoff 
(1911–1996), co-author with Saunders Mac Lane (1909–2005) of A Survey of Modern Algebra, which I 
partially studied as an undergraduate in the early 1960s, wrote the seminal book Lattice Theory, published 
in three editions in 1940, 1948, and 1965. In the second edition, available on the Web, Birkhoff tells us 
that lattice theory originally evolved from Boolean algebra and the algebra of relations, which Charles 
Sanders Peirce and Ernst Schröder developed in the 1800s,124 a neglected chapter in the history of logic, as 
Geraldine Brady points out, mentioned in Chapter 3.  

The second stage in the development of lattice theory took place in the 1930s, building on Moderne 
Algebra by Bartel Leendert van der Waerden (1903–1996), a systematized treatise on the abstract algebra 
of groups, rings, and fields, perhaps the first treatise to treat the subject as a comprehensive whole.125 As 
George Grätzer tells us in Lattice Theory: First Concepts and Distributive Lattices from 1971, the first of an 
ever-expanding sequence of books on the subject, Birkhoff wrote a brilliant series of papers in which “he 
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demonstrated the importance of lattice theory and showed that it provides the unifying framework for 
hitherto unrelated developments in many mathematical disciplines.”126 In 1948, Birkhoff envisaged that 
while lattice theory may never equal its ‘elder sister group theory’, he believed “that it will achieve a 
comparable status.”127 

What I am seeing here is an attempt to take the abstractions of human reasoning to the utmost level of 
generality from within mathematics, not unlike the way that scientists have been attempting to solve the 
ultimate problem of human learning from within physics since the 1920s. For Mac Lane went on to co-
found category theory and Grätzer wrote a book on Universal Algebra, following in the footsteps of 
Arthur North Whitehead, who wrote a book with a similar title in 1898. 

Yet, the ultimate taxonomy of taxonomies, as the coordinating framework for the Unified 
Relationships Theory, as the Theory of Everything, is Integral Relational Logic, as Chapter 2, explains. 
To demonstrate this beyond all reasonable doubt, even among the sceptics, I still need to write Chapter 5, 
which I have provisionally titled ‘Universal Algebra’. This will show how all these abstract branches of 
mathematics, up to quantum computation, can be represented in this universal system of thought. 

 
In the meantime, let us look at Tamari lattices, named after Dov Tamari (1911–2006), formerly 

Bernhard Teitler, a fascinating character, as Folkert Müller-Hoissen and Hans-Otto Walther tell us in a 
book to celebrate the hundredth anniversary of his birth.128 Inevitably, a background in abstract algebra is 
needed to fully understand the 1951 doctoral thesis in which Tamari presented his ideas on associative 
binary operations, later published in 1962 in the Netherlands as ‘The algebra of bracketings and their 
enumeration’.129  

Nevertheless, as I currently understand the situation, Tamari saw that the bracketings that Catalan 
introduced could be arranged in chains according to a rightward application of the usual associativity law 
as partially ordered sets, which Birkhoff called posets in Lattice Theory.130 However, the notion of poset did 
not, in itself, prove that Tamari’s construct is actually a lattice. For this requires there to be a top and 
bottom element in the structure, known as the least upper bound or supremum and greatest lower bound 
or infimum. In the event, Tamari developed the necessary proof with Samuel Huang, published in 1972.131 

In order to order the Catalan binary bracketings as posets, Tamari numbered them in 
this way in his original 1951 thesis,132 omitted from the publication of his thesis in 1954,133 
also giving codings for the fourteen bracketings in C4 with five characters.134 He then 
showed how these lattices could be displayed in one to three dimensions, such as these 
two diagrams: 

 

 
Wikipedia provides a diagram of the Tamari lattice T4 as a Hasse diagram, named after Helmut Hasse 

(1898–1979) because of the effective use Hasse made of them.135 What is particularly interesting about this 
model, as a lattice, is that the chains from one end to the other are not of equal length, ranging, in this 

Code Brackets 
1 ab 

11 a(bc) 
20 (ab)c 

111 a(b(cd)) 
120 a((bc)d) 
201 (ab)(cd) 
210 (a(bc))d 
300 ((ab)c)d 
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case, from four points and three binary operations, to seven points and six 
binary operations. Using Tamari’s encoding for the vertices, the nine 
chains are: 
1111→1120→1210→1300→2200→3100→4000	
1111→1120→1210→2110→3010→4000	
1111→1120→2020→3010→4000	
1111→1201→2101→3001→4000	
1111→2011→3001→4000	

1111→1120→1210→2110→2200→3100→4000	
1111→1201→1300→2200→3100→4000	
1111→2011→2020→3010→4000	
1111→1201→2101→3100→4000	
	

However, as Tamari observed in his original thesis, the lattices for the 
Cn bracketings can be extended into three and more dimensions as 
polytopes. Then, in 1963, Jim Stasheff rediscovered this sequence of 
polytopes when studying something called homotopy, not being aware of 
developments in combinatorics because of the compartmentalism of 
mathematics. Like me, he did not know initially whether parentheses 

should be moved to the left or the right. Be that as it may, such polytopes are generally called 
associahedra or Stasheff polytopes, today, although Stasheff says that they should really be called Tamari 
or Tamari-Stasheff polytopes.136 

The term associahedron, which Mark Haiman introduced in 1984,137 seems a little confusing to me, for I 
associate polyhedron with three dimensions, while a polytope has any number of dimensions, the 3-
polytope being a polyhedron. So maybe associahedron should really be a 3-associatope. Be that as it may, the 
three-dimensional associahedron, which Stasheff calls K5 , has 14 vertices, 21 edges, and 9 faces, in con-
formity with Euler’s Polyhedron Formula: V – E + F = 2, which generalizes into higher dimensions, as we 
see on page 315 in the final section on ‘Spatial dimensions’. 

There are many ways of constructing the associahedron as a cardboard model, three of which are 
illustrated below. The first appears to be an orthogonal representation, presented in Wikipedia,138 with 
the vertices at the intersections of a 3-dimensional grid in a cube of side three. In the centre, is the dual of 
the triaugmented triangular prism,139 a prism with pyramids stuck on each square face, also known as a 
tetrakaidecadeltahedron, 14-face deltahedron,140 or J51 in the set of Johnson solids, named after Norman 
Johnson (1930–2017), who in 1966 enumerated 92 convex non-uniform polyhedra with regular faces.141 
The enneahedron on the right, apparently consisting of six regular pentagons and three squares,142 is not 
one of them. It is a ‘near-miss Johnson solid’,143 not possible to construct without a little distortion. 

     
It is illuminating to construct the model on the right, as I did from a net that I found on the Web. For 

this clearly shows that the two vertices where three pentagons meet are not the supremum and infimum 
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in the Tamari lattice. Rather, these vertices are a((bc)(de)) and ((ab)(cd))e in the top-left and bottom-
right. The actual model also clearly shows the ‘short-cut’ through the vertices from the lowest to the 
highest and also the longest chains. 

Jean-Louis Loday tells us that it is possible to generalize the construction of associatopes in higher 
dimensions, but in a way that is slightly more involved than with similar constructs with simplexes and 
hypercubes.144 It will thus be more appropriate to look at this possibility in the final section in this chapter 
on ‘Spatial dimensions’. 

 
Another way of arranging Cn constructs in a graph is the Dyck lattice, 

illustrated by this example from Wikipedia. Unlike the Tamari lattice, all 
fifteen chains are of equal length, in this case seven with six links.145 I’m 
currently unsure what the binary operator in the algebra is here, for this 
lattice seems to be less studied than the Tamari lattice. However, yet 
another ‘Catalan triangle’ emerges from this construct (OEIS A227543). 
The OEIS says that the antidiagonal of this triangle sums to the number 
of fountains of n coins (OEIS A005169), related to the stacking of coins 
in the example above: 1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, …. However, 
I cannot see what ‘antidiagonal’ refers to here. 

 
Cn L n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

1 1 0 1                             
1 1 1 1                             
2 2 2 1 1                            
5 4 3 1 2 1 1                          

14 7 4 1 3 3 3 2 1 1                       
42 11 5 1 4 6 7 7 5 5 3 2 1 1                   

132 16 6 1 5 10 14 17 16 16 14 11 9 7 5 3 2 1 1              
429 22 7 1 6 15 25 35 40 43 44 40 37 32 28 22 18 13 11 7 5 3 2 1 1        

1430 29 8 1 7 21 41 65 86 102 115 118 118 113 106 96 85 73 63 53 42 34 26 20 15 11 7 5 3 2 1 1 

The length of each chain L(n) (OEIS A152947) is given by, for n ≥ 1: 

𝐿(𝑛) = 1 +
1
2 (𝑛 − 2)(𝑛 − 1) 

 
We can also arrange the terms in the Catalan sequence in a Hankel matrix, which has this form, 

named after Hermann Hankel (1839–1873), which has a surprising result, unique to the Catalan sequence. 

 

If we set a0 = C0 and ak = Ck, as in these first five matrices, their determinants are all 1. Furthermore, if 
a0 = C1 and so on, the determinants are still 1. 

a0 a1 a2 … … an−1
a1 a2 ! "

a2 "

" a2n−4
" ! a2n−4 a2n−3
an−1 … … a2n−4 a2n−3 a2n−2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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After this, setting a0 = C2, C3, C4, …, the values of the determinants grow as in this table, for matrices 
of size m: 

OEIS a0\m 1 2 3 4 5 6 
A000108 C0 1 1 2 5 14 42 
A005700 C1 1 1 3 14 84 594 
A006149 C2 1 1 4 30 330 4719 
A006150 C3 1 1 5 55 1001 26026 
A006151 C4 1 1 6 91 2548 111384 

I’m not sure how to determine the meaning of the sequences in the rows and columns in this table. 
The fourth column appears to be the sequence of square pyramidal numbers (OEIS A000330) and the 
OEIS describes the last three rows as ‘Number of Dyck paths’, but this is normally regarded as the 
Catalan sequence itself. So relationships with other structures need further clarification, perhaps through 
their recurrence equations and corresponding generating functions. 

Integer partitions 
Another way in which mathematicians like to cut mathematical objects into bits and count the pieces is 
with the natural numbers themselves, in a notion called partitions. The first record of partitions in the 
literature is a letter that Leibniz wrote to Johann Bernoulli (1667–1748) wondering if it were possible to 
enumerate them, which Leibniz thought to be difficult, but important.146 

However, it was Euler who really kicked off their study, after receiving a letter on 4th September 1740 
from Philippe Naudé the younger (1684-1747), a Fellow of the Royal Society.147 Naudé asked Euler, “how 
many ways can the number 50 be written as a sum of seven different positive integers?”148 Euler responded 
to Naudé within a few weeks, apologizing for his tardiness, giving the answer 522.149 Seven months later, 
Euler gave this solution in an ingenious paper titled Observationes analyticae variae de combinationibus, 
E158 in the Eneström index, which he presented at St. Petersburg Academy, but not published until 
1751.150 In the meantime, he gave a clearer solution in 1748 in Introductio in analysin infinitorum, “one of 
the world’s truly great mathematics books”.151 

Euler later wrote six other papers on this intricate subject,152 but its modern study really took off when 
Srinivasa Ramanujan (1887–1920) began investigating it, as dramatized in The Man Who Knew Infinity, a 

2015 biopic about his relationship with G. H. Hardy (1877–1947) 
and John Littlewood (1885–1977) at the University of Cambridge. 

In number theory and combinatorics, a partition of a positive 
integer n, also called an integer partition, is a way of writing n as a 
sum of positive integers. Two sums that differ only in the order of 
their summands are considered the same partition. The partition 
function p(n) thus represents the number of possible partitions of a 
nonnegative integer n, setting p(0) = 1, given that “the empty 
sequence forms the only partition of zero”.153  For instance, 4 can 
be partitioned in five distinct ways: 4 = 3 + 1 = 2 + 2 = 2 + 1 +

1( ) 1 1
1 2

⎛

⎝⎜
⎞

⎠⎟

1 1 2
1 2 5
2 14 25

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 1 2 5
1 2 5 14
2 5 14 42
5 14 42 132

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
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⎟

1 1 2 5 14
1 2 5 14 42
2 5 14 42 132
5 14 42 132 429
14 42 132 429 1430
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1 = 1 + 1 + 1 + 1. The growth in the sequence of integer partitions (OEIS A000041) can best be 
visualized graphically in schemas introduced by Norman Macleod Ferrers (1829–1903) and Alfred Young 
(1873–1940), as shown in the above diagram from Wikipedia. 

For instance, in a Ferrers diagram, which J. J. Sylvester introduced in 1882, from an idea that Ferrers 
had given him thirty years earlier, 154  one of the partitions of 14 that could be represented as an 
arrangement of asterisks, in a pair of conjugate ways, representing 6 + 6 + 4 and 3 + 3 + 3 + 3 + 2 + 2: 

* * * * * * 
* * * * * * 
* * * *   

 

* * * 
* * * 
* * * 
* * * 
* *  
* *  

 

These are two examples of partitions for p(14)=135. They are also two examples of the function 
P(n, k), which is the number of partitions of n into k summands. In these cases, P(14, 3) = 16 and 
P(14, 6) = 20. These partitions are examples of other sets of partitions, those with a maximum or 
minimum summand, in these cases, 6 and 3 and 4 and 2, respectively, examples of many conditions that 
can be placed on partitions. 

The number of unrestricted partitions of n can thus be calculated with this formula: 

𝑝(𝑛) =:𝑃(𝑛, 𝑘)
"

c=$

 

Young’s method for depicting partitions in squares arose from a paper he wrote in 1900,155 addressing a 
more general combinatorial situation in which symbols can be placed within the boxes, not necessary for 
partitions: 

      
      
      

 

   
   
   
   
   
   

 

Nowadays, it seems from the literature that Young’s depiction of partitions is that which is preferred 
by professional mathematicians, sometimes used to illustrate their properties. For instance, they can be 
used to create a recurrence equation for P(n, k), which Louis Comtet (1933–2012) gives in Advanced 
Combinatorics as, with slightly different initial values:156 

𝑃(𝑛, 𝑘) = 𝑃(𝑛 − 1, 𝑘 − 1) + 𝑃(𝑛 − 𝑘, 𝑘)										𝑃(𝑛, 1) = 𝑃(𝑘, 𝑘) = 1,					𝑃(𝑛, 𝑘) = 0,			𝑘 > 𝑛 
You can see that this recurrence equation has some similarities with Pascal’s triangle rule on page 197. 

The first terms are the same, while the second goes much further back in the hierarchy. This, we can 
trace to some extent with the hierarchical evolutionary structure in Integral Relational Logic, such as a 
family tree, depicting parents, grandparents, etc. For instance, the following triangle indicates the 
‘ancestors’ of P(20, 5) = 84, where P(10, 3) = 8 is darker because this ‘great great grandparent’ appears 
twice. Further back, the predecessors overlap far more, with different generations mixing, making the 
patterns difficult to discern, just like our family trees. For we are all cousins of each other, many times 
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over. Another feature of this recurrence equation is that the first non-zero k terms in the kth column are 
the same as those in the (k - 1)th column, with the first change in each column being marked in red. 

n\k p(n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 1 1                    
2 2 1 1                   
3 3 1 1 1                  
4 5 1 2 1 1                 
5 7 1 2 2  1 1                
6 11 1 3  3  2 1 1               
7 15 1 3  4  3 2 1 1              
8 22 1 4  5 5 3 2 1 1             
9 30 1 4 7  6 5 3 2 1 1            

10 42 1 5  8  9  7 5 3 2 1 1           
11 56 1 5 10 11 10 7 5 3 2 1 1          
12 77 1 6 12 15 13 11 7 5 3 2 1 1         
13 101 1  6 14 18 18 14 11 7 5 3 2 1 1        
14 135 1  7 16 23 23 20 15 11 7 5 3 2 1 1       
15 176 1 7 19 27 30 26 21 15 11 7 5 3 2 1 1      
16 231 1 8 21 34 37 35 28 22 15 11 7 5 3 2 1 1     
17 297 1 8 24 39 47 44 38 29 22 15 11 7 5 3 2 1 1    
18 385 1 9 27 47 57 58 49 40 30 22 15 11 7 5 3 2 1 1   
19 490 1 9 30 54 70 71 65 52 41 30 22 15 11 7 5 3 2 1 1  
20 627 1 10 33 64 84 90 82 70 54 42 30 22 15 11 7 5 3 2 1 1 

However, this recurrence equation does not answer the question that Naudé asked Euler in 1740. The 
former wanted to know in how many ways the number 50 could be written as a sum of seven distinct 
positive integers. Comtet provides this formula for deriving the number of distinct partitions Q(n, k) from 
unrestricted partitions:157 

𝑄(𝑛, 𝑘) = 𝑃 J𝑛 − J
𝑘
2
K , 𝑘K 

This formula has the effect of pushing down the columns in the above partition triangle by the 
sequence of natural numbers, the position of the initial value of each column then being given by the 
triangular numbers, 1, 3, 6, 10, 15, 21, 36, 45, …. In other words, the triangle of distinct partitions 
contains the same values as the triangle of unrestricted partitions, giving this recurrence equation: 

𝑄(𝑛, 𝑘) = 𝑄(𝑛 − 𝑘, 𝑘 − 1) + 𝑄(𝑛 − 𝑘, 𝑘)										𝑄(𝑛, 1) = 𝑄�J
𝑘 + 1
2

K , 𝑘¡ = 1, 𝑄(𝑛, 𝑘) = 0,			 J
𝑘 + 1
2

K > 𝑛 

The total number of partitions with distinct summands, sometimes called ‘strict partitions’, is denoted 
by q(n) (OEIS A000009): 

𝑞(𝑛) =:𝑄(𝑛, 𝑘)
"

c=$

 

This extended table, to n = 50, depicts the first few ‘ancestors’ of Q(50, 7) = 522, giving the answer to 
Naudé’s query. 

n\k q(n) 1 2 3 4 5 6 7 8 9 
1 1 1         
2 1 1         
3 2 1 1        
4 2 1 1        
5 3 1 2        
6 4 1 2 1       
7 5 1 3 1       
8 6 1 3 2       
9 8 1 4 3       

10 10 1 4 4 1      
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n\k q(n) 1 2 3 4 5 6 7 8 9 
11 12 1 5 5 1      
12 15 1 5 7 2      
13 18 1 6 8 3      
14 22 1 6 10 5      
15 27 1 7 12 6 1     
16 32 1 7 14 9 1     
17 38 1 8 16 11 2     
18 46 1 8 19 15 3     
19 54 1 9 21 18 5     
20 64 1 9 24 23 7     
21 76 1 10 27 27 10 1    
22 89 1 10 30 34 13  1    
23 104 1 11 33 39 18 2    
24 122 1 11 37 47 23 3    
25 142 1 12 40 54 30 5    
26 165 1 12 44 64 37 7    
27 192 1 13 48 72 47 11    
28 222 1 13 52 84 57 14 1   
29 256 1 14 56 94 70 20 1   
30 296 1 14 61 108 84 26 2   
31 340 1 15 65 120 101 35 3   
32 390 1 15 70 136 119 44 5   
33 448 1 16 75 150 141 58 7   
34 512 1 16 80 169 164 71 11   
35 585 1 17 85 185 192 90 15   
36 668 1 17 91 206 221 110 21 1  
37 760 1 18 96 225 255 136 28 1  
38 864 1 18 102 249 291 163 38 2  
39 982 1 19 108 270 333 199 49 3  
40 1113 1 19 114 297 377 235 65 5  
41 1260 1 20 120 321 427 282 82 7  
42 1426 1 20 127 351 480 331 105 11  
43 1610 1 21 133 378 540 391 131 15  
44 1816 1 21 140 411 603 454 164 22  
45 2048 1 22 147 441 674 532 201 29 1 
46 2304 1 22 154 478 748 612 248 40 1 
47 2590 1 23 161 511 831 709 300 52 2 
48 2910 1 23 169 551 918 811 364 70 3 
49 3264 1 24 176 588 1014 931 436 89 5 
50 3658 1 24 184 632 1115 1057 522 116 7 

 
However, Euler did not use Comtet’s recurrence equation or any other to answer Naudé’s question. 

Rather, he introduced another technique that is widely used in combinatorics and number theory, that of 
generating functions, which we look at the end of this section, starting on page 243. Specifically, in the 
case of integer partitions, Euler noticed that the coefficient of kmxn in the expansion of this expression 
would give the number of ways in which n can be written in m distinct summands.  

(1 + 𝑘𝑥)(1 + 𝑘𝑥A)(1 + 𝑘𝑥B)(1 + 𝑘𝑥F)(1 + 𝑘𝑥I)… 
So, to answer Naudé’s question, he needed to find the coefficient of k7x50 in this expansion of the 

product, which is as far as he took it in Introductio:158 

o(1+ 𝑘𝑥¥) =
�

¥=$

1 + 𝑘(𝑥 + 𝑥A + 𝑥B + 𝑥F + 𝑥I + 𝑥N + 𝑥¦ + 𝑥S + 𝑥§ +⋯) 

+𝑘A(𝑥B + 𝑥F + 2𝑥I + 2𝑥N + 3𝑥¦ + 3𝑥S + 4𝑥§ + 4𝑥$d + 5𝑥$$ +⋯) 
+𝑘B(𝑥N + 𝑥¦ + 2𝑥S + 3𝑥§ + 4𝑥$d + 5𝑥$$ + 7𝑥$A + 8𝑥$B + 10𝑥$F +⋯) 
+𝑘F(𝑥$d + 𝑥$$ + 2𝑥$A + 3𝑥$B + 5𝑥$F + 6𝑥$I + 9𝑥$N + 11𝑥$¦ + 15𝑥$S +⋯) 
+𝑘I(𝑥$I + 𝑥$N + 2𝑥$¦ + 3𝑥$S + 5𝑥$§ + 7𝑥Ad + 10𝑥A$ + 13𝑥AA + 18𝑥AB +⋯) 
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+𝑘N(𝑥A$ + 𝑥AA + 2𝑥AB + 3𝑥AF + 5𝑥AI + 7𝑥AN + 11𝑥A¦ + 14𝑥AS + 20𝑥A§ +⋯) 
+𝑘¦(𝑥AS + 𝑥A§ + 2𝑥Bd + 3𝑥B$ + 5𝑥BA + 7𝑥BB + 11𝑥BF + 15𝑥BI + 21𝑥BN +⋯) 
+𝑘S(𝑥BN + 𝑥B¦ + 2𝑥BS + 3𝑥B§ + 5𝑥Fd + 7𝑥F$ + 11𝑥FA + 15𝑥FB + 22𝑥FF +⋯) 

etc. 
Although Euler did not give the coefficient of k7 up to x50 in Introductio, he did provide a rectangular 

table for n ≤ 69 and k ≤ 11, as a realignment of the two triangular representations of Q(n, k) and P(n, k), 
above, enabling him to say that the number 50 can be expressed in unequal and either equal or unequal 
numbers in 522 and 8946 ways.159 So, with this table he was able to say in E158 that the fiftieth coefficient 
of k7 is 522, thereby bringing Naudé’s problem to a ‘most perfect solution’.160 For, as you can see, the 
sequences of coefficients of the powers of x associated with the powers of k are the columns in the triangle 
for Q(n, k). To find the total number of strict partitions q(n), Euler set k = 1, giving:161 

o(1 + 𝑥¥) =
�

¥=$

1 + 𝑥 + 𝑥A + 2𝑥B + 2𝑥F + 3𝑥I + 4𝑥N + 5𝑥¦ + 6𝑥S + 8𝑥§ +⋯ 

To find the number of partitions P(n, k), free of the condition that the summands be distinct, Euler 
realized that the coefficient of kmxn in the expansion of this expression would give him the required 
numbers: 

1
(1 − 𝑘𝑥)(1 − 𝑘𝑥A)(1 − 𝑘𝑥B)(1 − 𝑘𝑥F)(1 − 𝑘𝑥I)… 

Accordingly, in Introductio, he gave this expansion:162 

o
1

(1 − 𝑘𝑥¥) =
�

¥=$

1 + 𝑘(𝑥 + 𝑥A + 𝑥B + 𝑥F + 𝑥I + 𝑥N + 𝑥¦ + 𝑥S + 𝑥§ +⋯) 

+𝑘A(𝑥A + 𝑥B + 2𝑥F + 2𝑥I + 3𝑥N + 3𝑥¦ + 4𝑥S + 4𝑥§ + 5𝑥$d +⋯) 
+𝑘B(𝑥B + 𝑥F + 2𝑥I + 3𝑥N + 4𝑥¦ + 5𝑥S + 7𝑥§ + 8𝑥$d + 10𝑥$$ +⋯) 
+𝑘F(𝑥F + 𝑥I + 2𝑥N + 3𝑥¦ + 5𝑥S + 6𝑥§ + 9𝑥$d + 11𝑥$$ + 15𝑥$A +⋯) 
+𝑘I(𝑥I + 𝑥N + 2𝑥¦ + 3𝑥S + 5𝑥§ + 7𝑥$d + 10𝑥$$ + 13𝑥$A + 18𝑥$B +⋯) 
+𝑘N(𝑥N + 𝑥¦ + 2𝑥S + 3𝑥§ + 5𝑥$d + 7𝑥$$ + 11𝑥$A + 14𝑥$B + 20𝑥$F +⋯) 
+𝑘¦(𝑥¦ + 𝑥S + 2𝑥§ + 3𝑥$d + 5𝑥$$ + 7𝑥$A + 11𝑥$B + 15𝑥$F + 21𝑥$I +⋯) 
+𝑘S(𝑥S + 𝑥§ + 2𝑥$d + 3𝑥$$ + 5𝑥$A + 7𝑥$B + 11𝑥$F + 15𝑥$I + 22𝑥$N +⋯) 

etc. 
For instance, he could read immediately from this formula that 13 can be written as the sum of 5 whole 

numbers in 18 ways. Setting k = 1 once again, Euler obtained this generating function for the integer 
partitions: 

o
1

(1 − 𝑥¥) =
�

¥=$

1 + 𝑥 + 2𝑥A + 3𝑥B + 5𝑥F + 7𝑥I + 11𝑥N + 15𝑥¦ + 22𝑥S + 30𝑥§ + ⋯ 

As ever, Euler did not stop there. He proved a number of theorems with various restrictions on the 
partitions, including this: The number of different ways a given number can be expressed as the sum of different 

whole numbers is the same as the number of ways in which the same number 
can be expressed as the sum of odd numbers, whether the same or different.163 
For instance, 6 has four such subsets, given in this table.164 This is just 
one of many identities that mathematicians have found when 

enumerating subsets of partitions. 

 

Odd Distinct 
5 + 1 5 + 1 
3 + 3 6 
3 + 1 + 1 + 1 3 + 2 + 1 
1 + 1 + 1 + 1 + 1 + 1 + 1 4 + 2 
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However, while Euler created an extensive table of values, he was still in search of a recurrence 
equation in which to generate partition numbers. To this end, he noted that the expansion of the 
reciprocal of the function that generates the unrestricted partition numbers is:  

(1 − 𝑥)(1 − 𝑥A)(1 − 𝑥B)… = 1 − 𝑥 − 𝑥A + 𝑥I + 𝑥¦ − 𝑥$A − 𝑥$I + 𝑥AA + 𝑥AN − ⋯ 
where the exponents 1, 2, 5, 7, 12, ... on the right-hand side are given by the formula 

𝑔c =
1
2𝑘(3𝑘 − 1) 

This we recognize as the kth pentagonal number, normally defined for positive values of k. However, 
in this expression, k = 1, −1, 2, −2, 3, -3, …, giving the generalized pentagonal numbers, which are the 
exponents in the pentagonal number theorem, relating the product and series representations of the Euler 
function:165 

o(1− 𝑥c) = : (−1)c𝑥c(BcE$)/A
�

c=E�

= 1 +
�

c=$

:(−1)c(𝑥c(Bce$)/A + 𝑥c(BcE$)/A
�

c=d

) 

Now, the coefficients of this generating function are the differences between partition numbers with 
even and odd different summands, as this table indicates: 

OEIS n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
A000009 q(p) 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32 38 46 54 64 
A067661 even 1 0 0 1 1 2 2 3 3 4 5 6 7 9 11 13 16 19 23 27 32 
A067659 odd 0 1 1 1 1 1 2 2 3 4 5 6 8 9 11 14 16 19 23 27 32 
A010815 diff 1 -1 -1 0 0 1 0 1 0 0 0 0 -1 0 0 -1 0 0 0 0 0 

Rather surprisingly, Euler discovered that this pattern occurs in an apparently unrelated subject. When 
exploring the divisor function that enabled him to find 59 amicable pairs, additional to the three already 
found, as mentioned in Chapter 3, he wondered if it were possible to find any pattern in the sums of 
divisors of each natural number, today often called the sigma function. To this end, he presented the 
values of the sigma function up to 100 in tabular form, which George Pólya (1887–1985) simplified thus, in 
his translation and commentary of ‘Discovery of an extraordinary law of numbers in relation to the sum of 
their divisors’:166 

 1 2 3 4 5 6 7 8 9 10 
0 1 3 4 7 6 12 8 15 13 18 
1 12 28 14 24 24 31 18 39 20 42 
2 32 36 24 60 31 42 40 56 30 72 
3 32 63 48 54 48 91 38 60 56 90 
4 42 96 44 84 78 72 48 124 57 93 
5 72 98 54 120 72 120 80 90 60 168 
6 62 96 104 127 84 144 68 126 96 144 
7 72 195 74 114 124 140 96 168 80 186 
8 121 126 84 224 108 132 120 180 90 234 
9 112 168 128 144 120 252 98 171 156 217 

When looking at this table of numbers, Euler said, “we are almost driven to despair. We cannot hope 
to discover the least order. The irregularity of the primes [marked in red] is so deeply involved in it that 
we must think it impossible to disentangle any law governing this sequence, unless we know the law 
governing the sequence of the primes itself.”167 Nevertheless, he did find a recurring sequence linking all 
these numbers: 

𝜎(𝑛) = 𝜎(𝑛 − 1) + 𝜎(𝑛 − 2)			− 𝜎(𝑛 − 5) 		− 𝜎(𝑛 − 7) 
												+𝜎(𝑛 − 12) + 𝜎(𝑛 − 15) − 𝜎(𝑛 − 22) − 𝜎(𝑛 − 26) 
												+𝜎(𝑛 − 35) + 𝜎(𝑛 − 40) − 𝜎(𝑛 − 51) − 𝜎(𝑛 − 57) 
														+𝜎(𝑛 − 70) + 𝜎(𝑛 − 77) − 𝜎(𝑛 − 92) − 𝜎(𝑛 − 100) 
											+⋯ 
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Although he admitted that he was unable to give this formula a ‘rigorous demonstration’, he noted 
that the exponents of x in the formula (1 − 𝑥)(1 − 𝑥A)(1 − 𝑥B)… are the same as in this function, with the 
signs + and - similarly arising twice in succession. This could not be coincidence, enabling him to 
eventually prove the pentagonal number theorem,168 establishing the validity of this amazing recurrence 
equation for the partition numbers p(n), setting p(n - k) = 0, when n < k:169 

𝑝(𝑛) = 𝑝(𝑛 − 1) + 𝑝(𝑛 − 2) − 𝑝(𝑛 − 5) − 𝑝(𝑛 − 7) + 𝑝(𝑛 − 12) + 𝑝(𝑛 − 15) − 𝑝(𝑛 − 22) − 𝑝(𝑛 − 26) −⋯ 
There is one other fascinating recurrence equation between the sums of divisors and integer 

partitions,170 given here: 

𝑝(𝑛) =
1
𝑛
:𝜎(𝑛 − 𝑘)𝑝(𝑘)
"E$

c=d

																						𝑝(0) = 1 

where 𝜎(𝑘) is the sum of the divisors of k (OEIS A000203), also known as 𝜎$(𝑘), as we saw in the 
previous chapter. This is a fascinating relationship, showing a connection between divisions of integers in 
terms of both multiplicative factors and partitions by addition, giving this ‘Partition triangle’, not 
dissimilar to Segner’s recurrence equation for the Catalan numbers: 

p0        1        = 1  = 1 
p 1        1∙1        = 1 /1 = 1 
p 2       3∙1 + 1∙1       = 4 /2 = 2 
p 3      4∙1 + 3∙1 + 1∙2      = 9 /3 = 3 
p 4     7∙1 + 4∙1 + 3∙2 + 1∙3     = 20 /4 = 5 
p 5    6∙1 + 7∙1 + 4∙2 + 3∙3 + 1∙5    = 35 /5 = 7 
p 6   12∙1 + 6∙1 + 7∙2 + 4∙3 + 3∙5 + 1∙7   = 66 /6 = 11 
p 7  8∙1 + 12∙1 + 6∙2 + 7∙3 + 4∙5 + 3∙7 + 1∙11  = 105 /7 = 15 
p 8 15∙1 + 8∙1 + 12∙2 + 6∙3 + 7∙5 + 4∙7 + 3∙11 + 1∙15 = 176 /8 = 22 

 
Leonard James Rogers (1862–1933) found two other identities, as further subsets of q(n), as particular 

cases of more general theorems, not immediately associating them with partitions, publishing their proofs 
in 1894 in The Proceedings of the London Mathematical Society.171 Not unlike Euler, he showed that an 
infinite series could be represented as an infinite product of terms in two ways: 

1 +
𝑞

1 − 𝑞 +
𝑞F

(1 − 𝑞)(1 − 𝑞A) +
𝑞§

(1 − 𝑞)(1 − 𝑞A)(1 − 𝑞B) +⋯ =
1

(1 − 𝑞)(1 − 𝑞F)(1 − 𝑞N)(1 − 𝑞§)(1 − 𝑞$$)(1 − 𝑞$F)… 

1 +
𝑞A

1 − 𝑞 +
𝑞N

(1 − 𝑞)(1 − 𝑞A) +
𝑞$A

(1 − 𝑞)(1 − 𝑞A)(1 − 𝑞B) +⋯ =
1

(1 − 𝑞A)(1 − 𝑞B)(1 − 𝑞¦)(1 − 𝑞S)(1 − 𝑞$A)(1 − 𝑞$B)… 

As an obituary, published by the Royal Society, points out, the indices of the powers of q in the 
numerators of the two series are n2 and n(n + 1) and the indices of the powers of q in the two products are 
of the form 5k + 1 or 5k + 4 and 5k + 2 or 5k + 3, respectively. However, the mathematical community 
completely ignored these remarkable identities, perhaps because Rogers had no desire for recognition, 
being more interested in music than in exploring the work of other mathematicians.172 

In the event, Ramanujan independently discovered these beautiful identities without proof in 1913, 
when studying partitions, which MacMahon published in 1916 in volume II of Combinatory Analysis.173 
Then, in 1917, Ramanujan accidently discovered Rogers’s paper, subsequently publishing his own work 
with Rogers in 1919. In the meantime, Issai Schur (1875–1941), working in Germany during the First 
World War, unaware of developments in England, also independently discovered these identities in 
1917.174 Such is the stumbling way in which human knowledge is discovered, lying at the heart of what 
George E. Andrews and Kimmo Eriksson call the ‘romance of mathematics’ in their introductory book 
Integer Partitions—full of life stories and anecdotes of an astonishing nature.175 
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What is today called the first Rogers–Ramanujan 
identity, G(n), shows that the number of partitions of n into 
summands that are all of the form 5k ± 1 is equal to the 
number of partitions into distinct parts, where the 
difference between successive parts is ≥ 2. The Rogers–
Ramanujan second identity, H(n), shows that the number 
of partitions of n into addends that are all of the form 
5k ± 2 is equal to the number of partitions into distinct 
parts, where the difference between successive parts is ≥ 2 
and the smallest term is ≥ 2. Here are the examples of these 
identities that MacMahon gave for n = 10, saying that the 
second condition excludes repetitions and sequences.176 

In summary, here are the first 21 terms of G(n) and H(n), which Wikipedia tells us are the coefficients 
of infinite polynomials in q, as expansions of the Rogers–Ramanujan identities.177 

OEIS n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
A003114 G(n) 1 1 1 1 2 2 3 3 4 5 6 7 9 10 12 14 17 19 23 26 31 
A003106 H(n) 1 0 1 1 1 1 2 2 3 3 4 4 6 6 8 9 11 12 15 16 20 

 
Now, while there are several recurrence equations for integer partitions, it was not until 1918 that 

Ramanujan, with the help of Hardy, found and proved this highly complex asymptotic approximation:178 

𝑝(𝑛) =
1

4𝑛√3
𝑒«¬

A"
B  

which Hans Rademacher(1892–1969) later completed and perfected.179  
Ramanujan also discovered these remarkable congruences for unrestricted partitions:  
𝑝(5𝑘 + 4) ≡ 0				(𝑚𝑜𝑑	5) 
𝑝(7𝑘 + 5) ≡ 0				(𝑚𝑜𝑑	7) 
𝑝(11𝑘 + 6) ≡ 0				(𝑚𝑜𝑑	11) 
In other words, if n is a member of the sets {4, 9, 14, …}, {5, 12, 19, …}, or {6, 17, 28, …}, then the 

number of partitions is {5, 30, 135, …}, {7, 77, 490, …}, or {11, 297, 3718, …}, all divisible by 5, 7, or 
11, respectively.  

Ramanujan proved two of them in 1919, with Hardy completing the proof of the other after 
Ramanujan died.180 It might appear that these congruences are the beginning of many other similar ones. 
However, Ramanujan stated, “It appears there are no equally simple properties for any moduli involving 
primes other than these”.181 

In the event, it was not until 2011 that mathematicians were able to explain why only these three simple 
congruences exist. In the meantime, from the 1960s on, A. O. L. Atkin (1925–2008), a wartime colleague 
of Alan Turing, and his successors, found other, more complex, congruences, for small prime moduli, 
such as:  

			𝑝(11B ∙ 13𝑘 + 237) ≡ 0				(𝑚𝑜𝑑	13) 
			𝑝(23B ∙ 17𝑘 + 2623) ≡ 0				(𝑚𝑜𝑑	17) 

			𝑝(101F ∙ 19𝑘 + 815655) ≡ 0				(𝑚𝑜𝑑	19) 
Indeed, it has now been proved that there is a similar congruence for all partitions with a prime 

modulus. During this century, Ken Ono, Karl Mahlburg, Rhiannon L. Weaver, and Fredrik Johansson 

Partition G1(n) G2(n) H1(n) H2(n) 
10   ✓  ✓ 
9 1  ✓ ✓   
8 2   ✓ ✓ ✓ 
7 3   ✓ ✓ ✓ 
6 4  ✓ ✓  ✓ 
6 3 1   ✓   
6 1 1 1 1  ✓    
4 4 1 1  ✓    
4 1 1 1 1 1 1  ✓    
3 3 2 2    ✓  
2 2 2 2 2    ✓  
1 1 1 1 1 1 1 1 1 1 ✓    
Total 6 6 4 4 
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found other algorithms, generating over 22 billion congruences, apparently related to the Hardy–
Ramanujan–Rademacher formula for p(n), another large example being: 182 

𝑝(999959F ∙ 29𝑘 + 28995221336976431135321047) ≡ 0				(𝑚𝑜𝑑	29) 
There seems to be no end to the amazing patterns that mathematicians find among the partitions.  

 
As an aside, rather than partitioning integers by addition, we can also explore their composition by 

multiplication. On this point, we saw in the previous chapter that Ramanujan defined a highly composite 
number as one that has more divisors than any number smaller than it (OEIS A002182). The number of 
divisors of the nth highly composite number is OEIS A002183 and the number of prime factors is OEIS 
A112778.  

However, Euler went even further with his studies of prime factorization. He defined a function, 
denoted 𝜙(𝑛) or 𝜑(𝑛), which J. J. Sylvester termed totient, as the number of integers k in the range 
1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. For instance, for n = 9, the six 
numbers 1, 2, 4, 5, 7, and 8 are totients of 9 for they are all relatively prime to 9. So, 𝜑(9) = 6. The 
totient function thus just counts the totients of n and doesn’t add the elements, like partitions, or multiply 
them, like prime factors. 

However, there is a simple formula to calculate the totient of any number. If it is a prime p, then, fairly 
obviously, 𝜑(𝑝) = 𝑝 − 1. On the other hand, if it is a composite number 𝑛 = 𝑝¯𝑞°𝑟² …, where p, q, and r 
are distinct primes, then we need to eliminate all multiples of p, q, and r, etc. from the set {1, 2, 3, …, n} 
to find 𝜑(𝑛). The function for doing this is:183 

𝜑(𝑛) = 𝑛�1 − 1 𝑝³ ��1 − 1 𝑞³ ��1 − 1 𝑟³ �… 

For instance,  
𝜑(12) = 𝜑(2A ∙ 3) = 12(1 −½)(1 −⅓) = 4 

counting the prime factor 2 just once, not twice.184 
One other important property that Euler discovered is that if a and n are coprime, then: 

𝑎¶(") ≡ 1					(mod	𝑛) 
When n is prime, 𝜑(𝑛) = 𝑛 − 1, and Euler’s totient function becomes Fermat’s little theorem, which 

we met in Chapter 3, and which Euler proved in various ways over a period of nearly thirty years.185 
Exploring the totient function further is more than I wish to go in this book, other than to give the 

first twenty terms of the sequence (OEIS A000010), which Euler lists in ‘Theoremata arithmetica nova 
methodo demonstrate’, published in 1763, but the only one of Euler’s papers on Fermat’s little theorem not 
translated into English:186 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
𝝋(𝒏) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 

Stirling numbers 
We next come to the Stirling cycle and set numbers, also known as the Stirling numbers of the first and 
second kind. These numbers are named after James Stirling (1692–1770), who described them in 1730 in 
Methodus Differentials: Sive Tractatus De Summatione Et Interpolatione Seriesum Infinitarum (The method 
of Differences: or a Treatise on Summation and Interpolation of Infinite Series). Stirling is most famous 
for this celebrated approximation for n!, although this is as much the work of Abraham de Moivre (1667–
1754):187 

𝑛! ≈ √2𝜋𝑛𝑛"𝑒E" 
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In keeping with the central theme of this book, I prefer to begin describing these numbers as 
generative numerical data patterns, rather than with their modern interpretations in terms of combina-
torics and abstract algebra. But first, a word about notation, about which there is not universal consensus 
among mathematicians, as Eric W. Weisstein tells us on Wolfram MathWorld. Perhaps the simplest way 
of denoting them is as s(n, k) and S(n, k), like C(n, k) for the binomial coefficients. However, there is an 
added complication here, for there are two versions of the Stirling numbers of the first kind: signed and 
unsigned. Regarding the latter, which Stanley denotes with c(n, k),188 the Stirling numbers of the first 
kind are also denoted as, inspired by the notation �"c� for the binomial coefficients:189 

�
𝑛
𝑘
� 

with the Stirling numbers of the second kind being denoted as: 

»
𝑛
𝑘
¼ 

The unsigned Stirling numbers of the first kind are generated in triangular form, like Pascal’s triangle. 
But rather than adding the numbers to the left and right in the previous row, the number to the right is 
first multiplied by (n – 1), the sum of each row then being n! The suffixed superscripts in this table 
denote the multiplication factor for each cell in the triangle, with the factorials being OEIS A000142. 

n  Unsigned Stirling numbers of the first kind  n! 
1          1          1 
2         11  11         2 
3        22  32  12        6 
4       63  113  63  13       24 
5      244  504  354  104  14      120 
6     1205  2745  2255  855  155  15     720 
7    7206  17646  16246  7356  1756  216  16    5040 
8   50407  130687  131327  67697  19607  3227  287  17   40320 
9  403208  1095848  1181248  672848  224498  45368  5468  368  18  362880 

10 3628809  10265769  11727009  7236809  2693259  632739  94509  8709  459  19  3628800 

To generate unsigned Stirling numbers of the first kind, Pascal’s triangle rule, defined on page 197, 
becomes: 

�𝑛𝑘� = �𝑛 − 1𝑘 − 1� + (𝑛 − 1) �
𝑛 − 1
𝑘 � 

with �11� = 1, �𝑛0� = � 𝑛
𝑛 + 1� = 0, and 1 ≤ k ≤ n. 

The (signed) Stirling numbers of the first kind are then generated from this recurrence equation: 
𝑠(𝑛, 𝑘) = 𝑠(𝑛 − 1, 𝑘 − 1) − (𝑛 − 1)𝑠(𝑛 − 1, 𝑘) 

with s(1, 1) = 1, s(n, 0) = s(n, n + 1) = 0, and 1 ≤ k ≤ n. 
The sum of 𝑠(𝑛, 𝑘) on each row is 0. Here is the Stirling triangle of the first kind (OEIS A008275). 

n  Stirling numbers of the first kind  
1          1          
2         -1  1         
3        2  -3  1        
4       -6  11  -6  1       
5      24  -50  35  -10  1      
6     -120  274  -225  85  -15  1     
7    720  -1764  1624  -735  175  -21  1    
8   -5040  13068  -13132  6769  -1960  322  -28  1   
9  40320  -109584  118124  -67284  22449  -4536  546  -36  1  

10 -362880  1026576  -1172700  723680  -269325  63273  -9450  870  -45  1 
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The recurrence equation for the Stirling numbers of the second kind is similar to that for the unsigned 
Stirling numbers of the first kind, except that the number on the right is first multiplied by k, the value of 
the position of the cell in the row: 

»𝑛𝑘¼ = »𝑛 − 1𝑘 − 1¼ + 𝑘 »
𝑛 − 1
𝑘 ¼ 

with »11¼ = 1, » 𝑛
𝑛 + 1¼ = 0, and 1 ≤ k ≤ n. 

Here is the Stirling triangle of the second kind (OEIS A008277), again with suffixed superscripts 
denoting the multiplication factor for the right-hand term in the previous row. The totals of each row bn 
are Bell numbers (OEIS A000110), named after Eric Temple Bell (1883–1960). 

n  Stirling numbers of the second kind  bn 
1          1          1 
2         11  12         2 
3        11  32  13        5 
4       11  72  63  14       15 
5      11  152  253  104  15      52 
6     11  312  903  654  155  16     203 
7    11  632  3013  3504  1405  216  17    877 
8   11  1272  9663  17014  10505  2666  287  18   4140 
9  11  2552  30253  77704  69515  26466  4627  368  19  21147 

10 11  5112  93303  341054  425255  228276  58807  7508  459  110  115975 

Of particular interest here is that if we view the Stirling triangles as lower triangular matrices, that is 
with zeroes above and to the right of the main diagonal, the matrices are inverses of each other. This 
means that their product is the identity matrix, as in this example for n = 5:  

 		

As there is no reference to the Stirling numbers in MacMahon’s Combinatory Analysis from 1915 and 
1916, it seems that it was not until the emergence of modern algebra that mathematicians began to 
interpret these triangular sequences combinatorially. For instance, in An Introduction to Combinatorial 
Analysis in 1958, dedicated to E. T. Bell, Riordan introduced Stirling numbers fairly early on, with the 
first chapter reviewing the algebra of both combinations and permutations. However, five years later, 
Ryser does not mention Stirling in his comparatively short monograph on Combinatorial Mathematics. 

Interpreting the Stirling numbers, c(n, k) are called the Stirling cycle numbers, the count of the 
permutations of n objects that have just k cycles and S(n, k) are called Stirling set numbers, the number of 
groupings of n distinct things into exactly k groups. Such objects can be anything whatsoever. So, I’ll 
illustrate them with letters of the alphabet, although they can also be illustrated graphically, like some of 
the interpretations of the Catalan numbers, as Robert M. Dickau shows on his web site of Math Figures. 

The concept of cycle in the Stirling cycle numbers derives from group theory, which we look at in the 
next chapter. Here is an example that links combinatorics with abstract algebra, where cycles of 
permutations are called orbits, shown in the diagram on the right.190 

1 0 0 0 0
−1 1 0 0 0
2 −3 1 0 0
−6 11 −6 1 0
24 −50 35 −10 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 0 0 0 0
1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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c(4, 1)=6 c(4, 2)=11 c(4, 3)=6 c(4, 4)=1 
{a,b,c,d} 
{a,b,d,c} 
{a,c,b,d} 
{a,c,d,b} 
{a,d,b,c} 
{a,d,c,b} 

 

{a,b,c} {d} 
{a,c,a} {d} 
{a,b,d} {c} 
{a,d,b} {c} 
{a,c,d} {b} 
{a,d,c} {b} 
{b,c,d} {a} 
{b,d,c} {a} 
{a,b} {c,d} 
{a,c} {b,d} 
{a,d} {b,c} 

{a,b} {c} {d} 
{a,c} {b} {d} 
{a,d} {b} {c} 
{b,c} {a} {d} 
{b,d} {a} {b} 
{c,d} {a} {b} 

{a} {b} {c} {d} 

 

 

Here is an example of the fourth row in the Stirling triangle of the second kind, where the cycles in the 
first triangle are not distinguishable. It also shows how these partitions of sets can be arranged in a Hasse 
diagram. If the crossed set in the diagram is removed, omitting similar structures in higher values of n, 
the Stirling triangle reduces to the Narayana triangle on page 214.191 

S(4, 1)=1 S(4, 2)=7 S(4, 3)=6 S(4, 4)=1 
{a,b,c,d} 

 
{a,b,c} {d} 
{a,b,d} {c} 
{a,c,d} {b} 
{b,c,d} {a} 
{a,b} {c,d} 
{a,c} {b,d} 
{a,d} {b,c} 

{a,b} {c} {d} 
{a,c} {b} {d} 
{a,d} {b} {c} 
{b,c} {a} {d} 
{b,d} {a} {b} 
{c,d} {a} {b} 

 

{a} {b} {c} {d} 

 

 
The total of the rows, in the second Stirling triangle, the Bell numbers, are also called exponential 

numbers:192 the total number of ways to partition a set of n labelled elements (OEIS A000110). Naturally, 
the centre columns of the Stirling triangles form sequences, like the central binomial in Pascal’s triangle. 
The centre column of the first unsigned Stirling triangle is the number of permutations of 2n-1 objects 
with exactly n cycles (OEIS A129505) and the centre column of the second Stirling triangle is the 
number of partitions of a {2n-1}-set into n nonempty subsets (OEIS A129506). 

 
As well as the lower triangular matrix form of the Stirling numbers of the first and second kind being 

inverses of each other, Ivo Lah (1896–1979), an actuary, found another relationship between these two 
triangular sequences in a 1955 paper titled ‘A new kind of numbers, their properties and applications in 
mathematical statistics’.193 

Like the Stirling numbers of the first kind, Lah numbers, as Riordan named them,194 have signed and 
unsigned versions, the former being initially defined by Riordan and Comtet as 𝐿",c. However, as the 
unsigned numbers are most useful in combinatorics, I’ll use Wikipedia’s notation of 𝐿′(𝑛, 𝑘) to denote the 
original Lah numbers and 𝐿(𝑛, 𝑘) as those most commonly used.  

The recurrence equation that generates the signed Lah numbers is not unlike those that generate the 
Stirling numbers of the first and second kinds: 

𝐿′(𝑛 + 1, 𝑘) = −𝐿′(𝑛, 𝑘 − 1) − (𝑛 + 𝑘)𝐿′(𝑛, 𝑘) 
with 𝐿′(1,1) = −1, 𝐿′(𝑛, 0) = 0, 𝐿′(𝑛, 𝑘) = 0, 𝑘 > 𝑛 
From this, we obtain this formula for each term in the Lah triangle of numbers: 
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𝐿′(𝑛, 𝑘) = (−1)" J
𝑛 − 1
𝑘 − 1

K
𝑛!
𝑘! 

And here is the relationship between the Lah numbers and the Stirling numbers:195 

𝐿′(𝑛, 𝑘) =:(−1)¥𝑠(𝑛, 𝑗)𝑆(𝑗, 𝑘)
"

¥=c

 

For instance,  
𝐿À(6,3) = (−1)(−225) ∙ 1 + 85 ∙ 6 + (−1)(−15) ∙ 25 + 1 ∙ 90 = 1200 

These functions generate this lower triangular matrix of Lah numbers (OEIS A008297): 

n\k 1 2 3 4 5 6 7 8 9 10 Σ	
1 -1          -1 
2 2 1         3 
3 -6 -6 -1        -13 
4 24 36 12 1       73 
5 -120 -240 -120 -20 -1      -501 
6 720 1800 1200 300 30 1     4051 
7 -5040 -15120 -12600 -4200 -630 -42 -1    -37633 
8 40320 141120 141120 58800 11760 1176 56 1   394353 
9 -362880 -1451520 -1693440 -846720 -211680 -28224 -2016 -72 -1  -4596553 

10 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1 58941091 
Lah numbers 

In combinatorics, the positive, unsigned Lah numbers are used, defined as (−1)"𝐿′(𝑛, 𝑘),196 giving 
OEIS A105278. The recurrence equation then becomes: 

𝐿(𝑛 + 1, 𝑘) = 𝐿(𝑛, 𝑘 − 1) + (𝑛 + 𝑘)𝐿(𝑛, 𝑘) 
with 𝐿(1,1) = 1, 𝐿(𝑛, 0) = 0, 𝐿(𝑛, 𝑘) = 0, 𝑘 > 𝑛 
To see why the Lah numbers grow so must faster than the Stirling numbers, here is a triangular table 

of them showing the way that each term is the sum of the upper-left term and the upper-right term 
multiplied by the suffixed superscript, as the sum of those used in the Stirling numbers of the first and 
second kind. 

n Unsigned Lah numbers Σ 
1         1         1 
2        22  13        3 
3       63  64  15       13 
4      244  365  126  17      73 
5     1205  2406  1207  208  19     501 
6    7206  18007  12008  3009  3010  111    4051 
7   50407  151208  126009  420010  63011  4212  113   37633 
8  403208  1411209  14112010  5880011  1176012  117613  5614  115  394353 
9 3628809  145152010  169344011  84672012  21168013  2822414  201615  7216  117  4596553 

There is also a recurrence equation defining each column in terms of the previous one: 

𝐿(𝑛, 𝑘 + 1) =
𝑛 − 𝑘

𝑘(𝑘 + 1) 𝐿
(𝑛, 𝑘)								𝐿(𝑛, 1) = 𝑛! 

So, setting k = 1, 2, 3, etc., we can determine the nth term of the sequences for the columns in the Lah 
triangle, given with their generating functions on page 253. The diagonals don’t have such an obvious 

pattern, except the sequence after the first, which are called oblong 
numbers (OEIS A002378), whose nth term is: 

𝐿(𝑛, 𝑛 − 1) = 𝑛(𝑛 − 1)							𝑛 > 1 
In this context, the Lah numbers count the number of ways to 

partition a set of n elements into k nonempty linear queues, 
illustrated in this diagram from Wikipedia. The totals of each row 
are OEIS A000262, defined as the “number of ‘sets of lists’: number 
of partitions of {1, 2, 3, …, n} into any number of lists, where a list 
means an ordered subset.” Enumerating all ordered subsets in this 
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way generates a sequence that grows very fast, but not as rapidly as the number of elements in higher 
dimensional permutatopes, whose generating number of vertices is similarly n!, as we see on page 331. 
A000262 has this recurrence equation: 

𝑎(𝑛) = (2𝑛 − 1)𝑎(𝑛 − 1) − (𝑛 − 1)(𝑛 − 2)𝑎(𝑛 − 2)			𝑎(1) = 1, 𝑎(2) = 3 
Unsigned Lah numbers are also coefficients expressing rising factorials in terms of falling factorials and 

vice versa,197 which may be the way that Lah first found them. Rising and falling factorials are defined as 
𝑥(") = 𝑥" = 𝑥(𝑥 + 1)(𝑥 + 2)…(𝑥 + 𝑛 − 1) 

and 
(𝑥)" = 𝑥" = 𝑥(𝑥 − 1)(𝑥 − 2)… (𝑥 − 𝑛 + 1) 

Then, the unsigned Lah numbers are the coefficients of these expressions: 

𝑥" =:𝐿(𝑛, 𝑘)
"

c=$

𝑥" 

and 

𝑥" =:(−1)"Ec𝐿(𝑛, 𝑘)
"

c=$

𝑥" 

For instance, the red coefficients here are based on positive Lah numbers, adjusting for the sign in the 
second example. 

𝑥(𝑥 + 1)(𝑥 + 2) = 6𝑥 + 6𝑥(𝑥 − 1) + 1𝑥(𝑥 − 1)(𝑥 − 2) 
𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3) = −24𝑥 + 36𝑥(𝑥 + 1) − 12𝑥(𝑥 + 1)(𝑥 + 2) + 1𝑥(𝑥 + 1)(𝑥 + 2)(𝑥 + 3) 

Comtet defines the Stirling and Lah numbers as special cases of Bell polynomials,198 which it is not 
necessary to investigate further at the moment. 

Eulerian numbers 
Eulerian numbers arise from another way of generating a triangular array from permutations. However, 
this interpretation came later. Euler discovered these numbers in 1736199 and further developed them in 
1755 in Volume II of Institutiones calculi differentialis (Foundations of Differential Calculus), which is 
concerned with applications of the differential calculus, Volume I being concerned with theory.200 Having 
explored generalized series in Chapter 5 of Volume II, including Bernoulli numbers, which we look at 
next, in Chapter 7 he further generalized these series in a somewhat more complex way, as he admitted, 
by combining a general series with a geometric one. This led him to define this amazing sequence of 
expressions:201 

𝛼 =
1

1(𝑝 − 1) 

𝛽 =
𝑝 + 1

1 ∙ 2(𝑝 − 1)A 

𝛾 =
𝑝A + 4𝑝 + 1

1 ∙ 2 ∙ 3(𝑝 − 1)B 

𝛿 =
𝑝B + 11𝑝A + 11𝑝 + 1
1 ∙ 2 ∙ 3 ∙ 4(𝑝 − 1)F  

𝜀 =
𝑝F + 26𝑝B + 66𝑝A + 26𝑝 + 1

1 ∙ 2 ∙ 3 ∙ 4 ∙ 5(𝑝 − 1)I  

𝜁 =
𝑝I + 57𝑝F + 302𝑝B + 302𝑝A + 57𝑝 + 1

1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6(𝑝 − 1)N  

𝜂 =
𝑝N + 120𝑝I + 1191𝑝F + 2416𝑝B + 1191𝑝A + 120𝑝 + 1

1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7(𝑝 − 1)¦  

etc. 
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Euler also noted that the general form of these formulae could generate them arbitrarily far: 
𝑝"EA + 𝐴𝑝"EB + 𝐵𝑝"EF + 𝐶𝑝"EI + 𝐷𝑝"EN +⋯

1 ∙ 2 ∙ 3 ∙ … (𝑛 − 1)(𝑝 − 1)"E$  

where the nth terms for A, B, C, D, etc. are: 
𝐴 = 2"E$ − 𝑛 

𝐵 = 3"E$ − 𝑛 ∙ 2"E$ +
𝑛(𝑛 − 1)
1 ∙ 2  

𝐶 = 4"E$ − 𝑛 ∙ 3"E$ +
𝑛(𝑛 − 1)
1 ∙ 2 2"E$ −

𝑛(𝑛 − 1)(𝑛 − 2)
1 ∙ 2 ∙ 3 	

𝐷 = 5"E$ − 𝑛 ∙ 4"E$ +
𝑛(𝑛 − 1)
1 ∙ 2 3"E$ −

𝑛(𝑛 − 1)(𝑛 − 2)
1 ∙ 2 ∙ 3 2"E$ +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
1 ∙ 2 ∙ 3 ∙ 4  

etc. 
We need to be careful with the indexing here, which did not seem to concern Euler explicitly. The 

powers of p in the polynomial in the denominator (p – k) end when k = p. So the sequence begins with 
n = 2, rather than 1 or 0, as is more common. Furthermore, the initial values of A, B, C, D, etc. as 1 are 
set when n = 3, 4, 5, 6, etc. When n is less than these values, all the terms in the formulae miraculously 
cancel themselves out and A, B, C, D, etc. become 0. 

The polynomials in the numerators of Euler’s formulae are called Euler’s polynomials today and the 
coefficients of pk form what is known as Euler’s number triangle (OEIS A008292), as Riordan and 
Comtet presented it in their classic books Combinatorial Analysis202 and Advanced Combinatorics203 in 1968 
and 1970, respectively. Eulerian numbers are generated by another modification of Pascal’s triangle rule. 
But unlike the Stirling numbers of the second kind, the numbers to the left in the previous row are 
multiplied by a factor (n – k + 1), indicated by the prefixed superscripts in the triangle. As MathWorld 
puts it, “The Eulerian numbers represent a sort of generalization of the binomial coefficients where the 
defining recurrence relation weights the sum of neighbours by their row and column numbers, 
respectively.”204 The totals of each row are n!, like Stirling numbers of the first kind. 

n Euler’s number triangle n! 
1         1         1 
2        211  112        2 
3       311  242  113       6 
4      411  3112  2113  114      24 
5     511  4262  3663  2264  115     120 
6    611  5572  43023  33024  25755  116    720 
7   711  61202  511913  424164  311915  21206  117   5040 
8  811  72472  642933  5156194  4156195  342936  22477  118  40320 
9 911  85022  7146083  6882344  51561905  4882346  3146087  25028  119 362880 

The recurrence equation for the numbers in Euler’s number triangle is thus: 
𝐴(𝑛, 𝑘) = (𝑛 − 𝑘 + 1)𝐴(𝑛 − 1, 𝑘 − 1) + 𝑘𝐴(𝑛 − 1, 𝑘) 

with A(1, 1) = 1, A(n, 0) = A(n, n + 1) = 0, and 1 ≤ k ≤ n. 
Euler’s formulae for A, B, C, D, etc. form sequences as the diagonals of the triangle, corresponding to 

the pyramidal simplexes in Pascal’s triangle, highlighted in Wolfram MathWorld’s article on the Eulerian 
numbers. The first few sequences are naturally defined in the OEIS, with Euler’s offset reduced by one: 

OEIS nth term Offset Sequence 

A000012 1" 1 1, 1, 1, 1, 1, … 

A000295 2" − (𝑛 + 1) 2 1, 4, 11, 26, 57, … 
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OEIS nth term Offset Sequence 

A000460 3" − 2"(𝑛 + 1) +
1
2
𝑛(𝑛 + 1) 3 1, 11, 66, 302, 1191, … 

A000498 4" − 3"(𝑛 + 1) +
1
2
2"𝑛(𝑛 + 1) −

1
6
(𝑛 − 1)𝑛(𝑛 + 1) 4 1, 26, 302, 2416, 15619, … 

A000505 5" − 4"(𝑛 + 1) +
1
2
3"𝑛(𝑛 + 1) −

1
6
2"(𝑛 − 1)𝑛(𝑛 + 1) +

1
24
(𝑛 − 2)(𝑛 − 1)𝑛(𝑛 + 1) 5 1, 57, 1191, 15619, 156190… 

Then, of course, there are the central Eulerian numbers (OEIS A025585):  
n 1 2 3 4 5 6 7 8 
Cen 1 4 66 2416 156190 15724248 2275172004 447538817472 

However, when it comes to interpreting the Eulerian numbers in terms of combinatorics, there is some 
confusion in the literature, which bothered me for a time. Doing my best to sort out this confusion, not 
being a professional mathematician, I can best begin with Comtet’s approach. 

He defined a rise [or a fall] in a permutation 𝜎 of n elements 
when 𝜎(𝑖) < 𝜎(𝑖 + 1) [or 𝜎(𝑖) > 𝜎(𝑖 + 1)]. For instance, there are 5 
rises and 4 falls in this diagram of a permutation of 10 elements, 
with the dotted line joining those elements that do not change in the 
permutation.205 Using the notation for permutations that Augustin-
Louis Cauchy (1789–1857) introduced in 1815:206 

𝜎 = J
1
4
2
3
3
7
4
2
5
5
6
6
7
10
8
9
9
1
10
8
K 

Comtet then wrote, “The number a(n,k) of permutations of [n] 
with k rises satisfies the following recurrence relations: 

𝑎(𝑛, 𝑘) = (𝑛 − 𝑘)𝑎(𝑛 − 1, 𝑘 − 1) + (𝑘 + 1)𝑎(𝑛 − 1, 𝑘) 
for n, k ≥ 1, with a(n, 0)=1 for n ≥ 0, and a(0, k) = 0 for k ≥ 1”. 
However, this is not how he defined the Eulerian numbers, which he had earlier defined in terms of an 

exponential generating function, a concept that we’ll look at later. For in the Eulerian triangle, 1 ≤ k ≤ n, 
whereas, in his definition of a rise, 0 ≤ k ≤ n - 1. To connect the two recurrence equations, he showed 
that207  

𝑎(𝑛, 𝑘 − 1) = 𝐴(𝑛, 𝑘) = 𝐴(𝑛, 𝑛 − 𝑘 + 1) 
But here there is some confusion in the literature. For instance, Wolfram MathWorld calls Comtet’s 

adjusted rise a permutation run208 and his original rise a permutation ascent,209 which is denoted as: 

Æ
𝑛
𝑘Ç 

like the binomial coefficients and Stirling numbers, where < and > denote rise and fall.  
However, the Eulerian triangle then becomes asymmetric (OEIS A173018), as defined in Concrete 

Mathematics by Ronald L. Graham, Donald E. Knuth, and Oren Patashnik,210 with 

Æ
0
0Ç = 1									and								 Æ

𝑛
𝑛Ç = 	0 

The notion of run is implemented as runs in the Combinatorica extension to the Mathematica 
language,211 which would return this for the permutation 𝜎 above: 

{{4}, {3,7}, {2, 5, 6, 10}, {9}, {1, 8}} 
To unravel this confusion, I look at the way the sets of Eulerian numbers grow as consecutive numbers 

are added to the base that is permuted. In these permutations, the vertical line | marks each point in the 
permutation where there is a fall in the sequence of numbers. 
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1 
 

1 2 2 | 1 
 

1 2 3 1 3 | 2 3 | 1 2 
2 | 1 3 2 3 | 1 3 | 2 |1 

 

1 2 3 4 1 2 4 | 3 1 4 | 2 3 4 | 1 2 3 
2 | 1 3 4 2 | 1 4 | 3 2 4 | 1 3 4 | 2 | 1 3 
1 3 | 2 4 1 3 4 | 2 1 4 | 3 | 2 4 | 1 3 | 2 
2 3 | 1 4 2 3 4 | 1 2 4 | 3 | 1 4 | 2 3 | 1 
3 | 1 2 4 3 | 1 4 | 2 3 4 | 1 2 4 | 3 | 1 2 
3 | 2 | 1 4 3 | 2 4 | 1 3 4 | 2 | 1 4 | 3 | 2 | 1 

 

Then there are two ways of interpreting these permutations, with runs on the left and rises/ascents on 
the right in this example for n = 4, where the runs are all unique, but the rises are not. 

A(4,1)=1 A(4,2)=11 A(4,3)=11 A(4,4)=1 
{1, 2, 3, 4} {2}, {1, 3, 4} 

{1, 3}, {2, 4} 
{2, 3}, {1, 4} 
{3}, {1, 2, 4} 
{1, 2, 4}, {3} 
{1, 3, 4}, {2} 
{2, 3, 4}, {1} 
{1, 4}, {2, 3} 
{2, 4}, {1, 3} 
{3, 4}, {1, 2} 
{4}, {1, 2, 3} 

{3}, {2}, {1, 4} 
{2}, {1, 4}, {3} 
{3}, {1, 4}, {2} 
{3}, {2, 4}, {1} 
{1, 4}, {3}, {2} 
{2, 4}, {3}, {1} 
{3, 4}, {2}, {1} 
{4}, {2}, {1, 3} 
{4}, {1, 3}, {2} 
{4}, {2, 3}, {1} 
{4}, {3}, {1, 2} 

{4}, {3}, {2}, {1} 

 

a(4,3)=1 a(4,2)=11 a(4,1)=11 a(4,0)=0 
{1, 2}, (2, 3), {3, 4} {1, 3}, {3, 4} 

{1, 3}, {2, 4} 
{2, 3}, {1, 4} 
{1, 2}, {2, 4} 
{1, 2}, {2, 4} 
{1, 3}, {3, 4} 
{2, 3}, {3, 4} 
{1, 4}, {2, 3} 
{2, 4}, {1, 3} 
{3, 4}, {1, 2} 
{1, 2}, {2, 3} 

{1, 4} 
{1, 4} 
{1, 4} 
{2, 4} 
{1, 4} 
{2, 4} 
{3, 4} 
{1, 3} 
{1, 3} 
{2, 3} 
{1, 2} 

— 

 

There are clearly some further patterns appearing here, which there is no need to explore further. 
However, it is interesting to note that the total number of rises in all permutations of order n is:212 

𝑟" = :𝑘 ∙ 𝑎(𝑛, 𝑘) =
1
2

"E$

c=d

(𝑛 − 1)𝑛! 

giving this sequence (OEIS A001286), the unsigned Lah numbers L(n-1, 2), for n > 1: 
n 1 2 3 4 5 6 7 8 9 10 
rn 0 1 6 36 240 1800 15120 141120 1451520 199584000 

Sums of powers and Bernoulli numbers 
When cataloguing the figurate numbers, we found formulae for the nth terms of the partial sums of the 
natural numbers, squares, and cubes: 

:𝑘
"

c=$

=
1
2𝑛
(𝑛 + 1) =

1
2𝑛

A +
1
2𝑛 

:𝑘A
"

c=$

=
1
6𝑛
(𝑛 + 1)(2𝑛 + 1) =

1
6
(2𝑛B + 3𝑛A + 𝑛) =

1
3𝑛

B +
1
2𝑛

A +
1
6𝑛 

:𝑘B
"

c=$

=
1
4𝑛

A(𝑛 + 1)A =
1
4
(𝑛F + 2𝑛B + 𝑛A) =

1
4𝑛

F +
1
2𝑛

B +
1
4𝑛

A 

But what is the polynomial expansion of the general power series?213 

:𝑘5
"

c=$

 

Can we find a general formula for this sequence of sequences, the first ten partial sums of powers km: 

m OEIS Sequence 
0 A000027 1, 2, 3, 4, 5, 6, … 
1 A000217 1, 3, 6, 10, 15, 21, … 
2 A000330 1, 5, 14, 30, 55, 91, … 
3 A000537 1, 9, 36, 100, 225, 441, … 
4 A000538 1, 17, 98, 354, 979, 2275, … 
5 A000539 1, 33, 276, 1300, 4425, 12201, … 
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m OEIS Sequence 
6 A000540 1, 65, 794, 4890, 20515, 67171, … 
7 A000541 1, 129, 2316, 18700, 96825, 376761, … 
8 A000542 1, 257, 6818, 72354, 462979, 2142595, … 
9 A007487 1, 513, 20196, 282340, 2235465, 12313161, … 

10 A023002 1, 1025, 60074, 1108650, 10874275, 71340451, … 

Well, this is a question that has a long history, from the ancient Greeks, through Indian and Arabic 
mathematicians, to the Europeans in the sixteenth and seventeenth centuries, as Janet Beery explains in 
her Web pages on ‘Sums of Powers of Positive Integers’.214 In particular, it fascinated Johann Faulhaber 
(1580–1635), a German cossist or early algebraist who collaborated with Kepler and influenced Descartes 
with his Rosicrucian thinking. For the Rosicrucians were “a brotherhood combining elements of mystical 
beliefs with an optimism about the ability of science to improve the human condition”,215 also at the heart 
of Comenius’s pansophic vision, rejected by the founders of the Royal Society, leading to the mess that 
the world is in today. 

After Faulhaber had found formulae for the sums of powers up to the seventh and twelfth in 1614 and 
1617,216 in 1631, he presented formulae for values of m up to 17 in Academia Algebræ, written in German 
despite its Latin title with a rather strange cossist notation. Helpfully interpreting this paper, Donald E. 
Knuth tells us that Faulhaber first found formulae for odd m in terms of 𝑁 = (𝑛A + 𝑛)/2, giving the sum 
of the cubes as N2, for instance. Then knowing the relationship between the sums of even and odd 
powers, he was able to interpolate the even powers too.217 Going from m = 0 to 9, this table from Ken 
Ward’s website gives the coefficients for each of the powers of n:218 

Power m+1 m m-1 m-2 m-3 m-4 m-5 m-6 m-7 
0 1/1         
1 1/2 1/2        
2 1/3 1/2 1/6       
3 1/4 1/2 1/4       
4 1/5 1/2 1/3  -1/30     
5 1/6 1/2 5/12  -1/12     
6 1/7 1/2 1/2  -1/6  1/42   
7 1/8 1/2 7/12  -7/24  1/12   
8 1/9 1/2 2/3  -7/15  2/9  -1/30 
9 1/10 1/2 3/4  -7/10  1/2  -3/20 

There seems to be a pattern here, but what on earth is it? The coefficients total one, the first being 
1/(m+1), the second ½, and the third seems to be m/12. After this, alternating coefficients are zero and 
the other coefficients alternate between minus and plus. But does this pattern continue indefinitely and 
what is the pattern that underlies the coefficients? Such a puzzle is not unlike the intelligence tests that 
teachers set children at school or those that Mensa sets as entry to their exclusive club. Well, like Tycho 
Brahe, measuring the positions of the stars and planets, Faulhaber did not find the underlying pattern. It 
was left to Jakob Bernoulli (1654/55–1705), acting like Kepler to Tycho, to find a generalized expression for 
these coefficients. 

Bernoulli found the solution to this problem after reading Arithmetica Infinitorum by John Wallis 
(1616–1703), providing the first adequate proof of the binomial theorem for positive integral powers, 
presenting an array that is the substantially the same as Pascal’s triangle.219 This proof is contained in Part 
Two, titled ‘The Doctrine of Permutations and Combinations’ of Ars Conjectandi (The Art of 
Conjecturing), saying in the Introduction: 
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The Art called Combinatorics should be judged, as it merits, most useful, because it remedies this defect of our mind and 
teaches us how to enumerate all possible ways in which several things can be combined, transposed, or joined with each 
other, so that we may be sure that we have omitted nothing that can contribute to our purpose.220 
Ars Conjectandi, which was incomplete when Bernoulli died, despite writing it on and off for twenty 

years, was published by his nephew Nicolaus Bernoulli (1687–1759), also nephew to Jakob’s younger 
brother Johann, in 1711, laying down the foundations of modern probability theory.221 To unravel what 
some call the ‘important and quite mysterious role’ that Bernoulli’s numbers play in mathematics,222 I find 
it useful to begin with a video that Burkard Polster posted on his Mathologer YouTube channel,223 often 
an entertaining and clarifying way of revealing the inner secrets of mathematics, counterbalancing the 
general trend, for “mathematicians like to make things complicated”, as Robbert Dijkgraaf, Director of 
the Institute for Advanced Study, said in another YouTube video on the same day in October 2019.224 

Mathologer began by noting that the sum of cubes is equal to the square of the sum of the natural 
numbers, or triangular numbers. Labelling each sum of powers Sm, this suggests that we could find a 
recurrence equation for Sm in terms of previous values of Sm. To find this relationship in terms of the 
powers of n, we begin with this expression for the binomial formula:  

(𝑥 − 1)" =:(−1)c G𝑛𝑘H
"

c=d

𝑥"Ec  

For instance, to find S4, we use: 
(𝑥 − 1)I = 𝑥I − 5𝑥F + 10𝑥B − 10𝑥A + 5x − 1 

which can be rewritten: 
5𝑥F − 10𝑥B + 10𝑥A − 5x + 1	 = 𝑥I − (𝑥 − 1)I 

Now setting x = 1 to n in this formula, we obtain n equations whose sum is: 
5𝑆F − 10𝑆B + 10𝑆A − 5𝑆$ + 𝑆d 	= 𝑛I 

for the right-hand expressions are a telescoping series in which terms from consecutive equations 
cancel each other out. As S3, S2, S1, and S0 are already known, we therefore obtain: 

𝑆F =:𝑛F
"

c=$

=
1
5𝑛

I +
1
2𝑛

F +
1
3𝑛

B −
1
30𝑛 

We could continue calculating Sm indefinitely for consecutive values of m, but this is a little tedious. 
We need a general formula. To find this, we recognize that what we are doing in developing a formula for 
S4, for instance, is solving a set of five linear equations, which can be solved with one matrix equation in 
linear algebra, which we look at in Chapter 5 on ‘Universal algebra’. 

   

To solve this equation for all values of Sm simultaneously, we take the inverse of the 5 by 5 matrix to 
obtain: 

n1

n2

n3

n4

n5

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

1 0 0 0 0
−1 2 0 0 0
1 −3 3 0 0
−1 4 −6 4 0
1 −5 10 −10 5

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

S
0

S
1

S
2

S
3

S
4

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
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Here, we see the coefficients of powers of n in the expressions for Sm, for m = 0 to 4, which are 
obtained directly by multiplying the vector of powers of n by the matrix. As the inverse matrix is formed 
directly from Pascal’s triangle, we have found a simple way of calculating all the coefficients of the powers 
of n in the expressions for Sm. Of course, Bernoulli did not know of the elegant way of solving the sums-
of-powers problem, because matrices were not discovered until the 1800s. Nevertheless, he did base his 
reasoning on Pascal’s triangle in a somewhat similar fashion. 

First, acknowledging the contributions that Faulhaber, Wallis, and others had made in their attempts 
to find the hidden pattern in the sums of powers of the integers, Bernoulli noted that while figurate 
numbers are generated by addition, powers are generated by multiplication. So, as the sums of figurate 
numbers are known, “the sums of powers can be investigated with no more difficulty that with which 
Wallis derived the former from the latter.” Then, in just three paragraphs describing this generative 
process, Bernoulli provided a table of the first ten sums of powers, similar to Faulhaber’s formulæ.225 Most 
significantly, he arranged the sums of powers in columns,226 somewhat like this, to which I have added S0, 
merging Bernoulli’s presentation with that of Mathologer, correcting the mistake that Bernoulli made.227 

𝑆d =:𝑘d
"

c=$

=
1
1𝑛 

𝑆$ =:𝑘$
"

c=$

=
1
2𝑛

A +
1
2𝑛 

𝑆A =:𝑘A
"

c=$

=
1
3𝑛

B +
1
2𝑛

A +
1
6𝑛 

𝑆B =:𝑘B
"

c=$

=
1
4𝑛

F +
1
2𝑛

B +
1
4𝑛

A + 0𝑛 

𝑆F =:𝑘F
"

c=$

=
1
5𝑛

I +
1
2𝑛

F +
1
3𝑛

B + 0𝑛A −
1
30𝑛 

𝑆I =:𝑘I
"

c=$

=
1
6𝑛

N +
1
2𝑛

I +
5
12𝑛

F + 0𝑛B −
1
12𝑛

A + 0𝑛 

𝑆N =:𝑘N
"

c=$

=
1
7𝑛

¦ +
1
2𝑛

N +
1
2𝑛

I + 0𝑛F −
1
6𝑛

B + 0𝑛A +
1
42𝑛 

𝑆¦ =:𝑘¦
"

c=$

=
1
8𝑛

S +
1
2𝑛

¦ +
7
12𝑛

N + 0𝑛I −
7
24𝑛

F + 0𝑛B +
1
12𝑛

A + 0𝑛 

𝑆S =:𝑘S
"

c=$

=
1
9𝑛

§ +
1
2𝑛

S +
2
3𝑛

¦ + 0𝑛N −
7
15𝑛

I + 0𝑛F +
2
9𝑛

B + 0𝑛A −
1
30𝑛 
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𝑆§ =:𝑘§
"

c=$

=
1
10𝑛

$d +
1
2𝑛

§ +
3
4𝑛

S + 0𝑛¦ −
7
10𝑛

N + 0𝑛I +
1
2𝑛

F + 0𝑛B −
3
20𝑛

A + 0𝑛 

𝑆$d =:𝑘$d
"

c=$

=
1
11𝑛

$$ +
1
2𝑛

$d +
5
6𝑛

§ + 0𝑛S − 1𝑛¦ + 0𝑛N + 1𝑛I + 0𝑛F −
1
2𝑛

B + 0𝑛A +
5
66𝑛 

When Bernoulli looked at the law of progression in these formulae, he realized immediately that those 
I have marked in cyan are special, giving this general expression for the sum of powers:228 

:𝑛É =
1

𝑐 + 1𝑛
Ée$ +

1
2𝑛

É +
𝑐
2𝐴𝑛

ÉE$ +
𝑐(𝑐 − 1)(𝑐 − 2)

2 ∙ 3 ∙ 4 𝐵𝑛ÉEB 

+
𝑐(𝑐 − 1)(𝑐 − 2)(𝑐 − 3)(𝑐 − 4)

2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 𝐶𝑛ÉEI 

+
𝑐(𝑐 − 1)(𝑐 − 2)(𝑐 − 3)(𝑐 − 4)(𝑐 − 5)(𝑐 − 6)

2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8 𝐷𝑛ÉE¦ + ⋯ 

 “etc., the exponent of the power continually being reduced by two until one arrives at n or nn.” The 
coefficients “A, B, C, D, etc … are so established that each of the coefficients along with the others of its 
order add up to 1.”229 Together with those I have marked in green, these final coefficients in the sums of 
powers have been known as Bernoulli numbers B0, B1, B2, etc., since 1755, at the suggestion of both de 
Moivre and Euler.230  

So the formulae for the first few power series are as follows: 

𝑆d =:𝑘d
"

c=$

=
1
1 (1𝐵d𝑛) 

𝑆$ =:𝑘$
"

c=$

=
1
2 (1𝐵d𝑛

A + 2𝐵$𝑛) 

𝑆A =:𝑘A
"

c=$

=
1
3 (1𝐵d𝑛

B + 3𝐵$𝑛A + 3𝐵A𝑛) 

𝑆B =:𝑘B
"

c=$

=
1
4 (1𝐵d𝑛

F + 4𝐵$𝑛B + 6𝐵A𝑛A + 4𝐵B𝑛) 

𝑆F =:𝑘F
"

c=$

=
1
5 (1𝐵d𝑛

I + 5𝐵$𝑛F + 10𝐵A𝑛B + 10𝐵B𝑛A + 5𝐵F𝑛) 

𝑆I =:𝑘I
"

c=$

=
1
6 (1𝐵d𝑛

N + 6𝐵$𝑛I + 15𝐵A𝑛F + 20𝐵B𝑛B + 15𝐵F𝑛A + 6𝐵I𝑛) 

𝑆N =:𝑘N
"

c=$

=
1
7 (1𝐵d𝑛

¦ + 7𝐵$𝑛N + 21𝐵A𝑛I + 35𝐵B𝑛F + 35𝐵F𝑛B + 21𝐵I𝑛A + 7𝐵N𝑛) 

The coefficients of nj for j = m + 1 to 1 in Sm are thus: 
1

𝑚 + 1
J 𝑚 + 1
𝑚 + 1 − 𝑗K𝐵5e$E¥ 

So the general formula for the sum of powers is: 

:𝑘5 =
"

c=$

1
𝑚 + 1

:J𝑚 + 1
𝑗 K𝐵¥𝑛5e$E¥

5

¥=d

 

where Bj is a Bernoulli number, defining each in terms of the previous ones thus: 

𝐵¥ =
1

𝑗 + 1
:(−1)<
¥E$

<=d

J
𝑗 + 1

𝑗 − 𝑖 − 1
K𝐵¥E<E$  
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So binomial coefficients appear twice as coefficients when calculating the coefficients of powers of n in 
the sums of powers. However, there is some ambiguity in the recurrence equations that generate the 
sequence of Bernoulli numbers, which are rationals, not integers, unlike all other sequences in this 
section. Furthermore, they need some notational craftiness to explain and understand. I have found two 
approaches to this problem, leading to a further puzzle in the definition of these mysterious numbers. 

Conway and Guy give one definition in The Book of Numbers, while Ken Ward gives another on his 
website on the Bernoulli numbers. To compare these, I’ll modify the former’s presentation with the 
latter’s approach. Conway and Guy effectively use this recurrence equation, where B is a generic for the 
Bernoulli numbers: 

(𝐵 − 1)ce$ − 𝐵ce$ = 0											𝑘 ≠ 0	

For instance, setting k = -1 gives B0 = 1. There is thus no need to set the initial value in the sequence, 
as is sometimes done in recurrence equations, for this is determined directly from the formula. Then, 
setting k = 1, to determine B1, gives: 

(𝐵 − 1)A − 𝐵A = 𝐵A − 2𝐵$ + 𝐵d − 𝐵A = 0	
Now, to explain the notational trick, interpret the powers of B as suffixes, as corresponding Bernoulli 

numbers, giving: 
𝐵A − 2𝐵$ + 𝐵d − 𝐵A = 0 

From which we get B1 = ½, which is the value of B1 used in the sums of powers. However, we cannot 
set k = 0 in the recurrence equation, for this gives -1 = 0.  

The other recurrence equation that generates the Bernoulli numbers is: 
(𝐵 + 1)ce$ − 𝐵ce$ = 0												𝑘 ≠ 0	

Once again, setting k = -1 gives B0 = 1 and setting k = 0 leads to another contradiction, this time, 1 = 0. 
However, when k = 1, to determine B1, gives, with the same notational trick: 

𝐵A + 2𝐵$ + 𝐵d − 𝐵A = 0	
From which we get B1 = -½, which is a valid value of B1 in some circumstances. The ambiguity in the 

value of B1 perhaps arises because it is the only odd-subscripted Bernoulli number that is not zero. So, we 
could add ½ and -½ to give zero, although it does not seem that doing so has any meaning. 

Nevertheless, both recurrence equations give the same sequence of Bernoulli numbers from B1 
onwards. For instance, in the first case, we have: 

3𝐵A = 3𝐵$ − 1 =
3
2 − 1 =

1
2 

And in the second: 

3𝐵A = −(3𝐵$ + 1) = −J3 J−
1
2
K + 1K = −J−

1
2
K =

1
2 

In both cases, B2 = 1/6. Again, calculating B3, we have: 

4𝐵B = 6𝐵A − 4𝐵$ + 1 =
6
6 −

4
2 + 1 = 0 

And: 

4𝐵B = −(6𝐵A + 4𝐵$ + 1) = −J
6
6 −

4
2 + 1

K = 0 

To see the patterns in these sums, I created a table in Excel of the Bernoulli numbers to B11:  
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	 n+1		 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11		 Σ	 Bn	

B0	 1		 1	 	 	 	 	 	 	 	 	 	 	 1	 1	
B1	 2		 1	 	 	 	 	 	 	 	 	 	 	 1	 ½	
B2	 3		 1½	 -1	 	 	 	 	 	 	 	 	 	 ½	 ⅙	
B3	 4		 1	 -2	 1	 	 	 	 	 	 	 	 	 0	 0	
B4	 5		 0	 -1⅔	 2½	 -1	 	 	 	 	 	 	 	 -⅙	 -1/30	
B5	 6		 -½	 0	 2½	 -3	 1	 	 	 	 	 	 	 0	 0	
B6	 7		 0	 1⅙	 0	 -3½	 3½	 -1	 	 	 	 	 	 ⅙	 1/42	
B7	 8		 ⅔	 0	 -2⅓	 0	 4⅔	 -4	 1	 	 	 	 	 0	 0	
B8	 9		 0	 -2	 0	 4⅕	 0	 -6	 4½	 -1	 	 	 	 -3/10	 -1/30	
B9	 10		 -1½	 0	 5	 0	 -7	 0	 7½	 -5	 1	 	 	 0	 0	
B10	 11		 0	 5½	 0	 -11	 0	 11	 0	 -9⅙	 5½	 -1	 	 ⅚	 5/66	
B11	 12		 5	 0	 -16½	 0	 22	 0	 -16½	 0	 11	 -6	 1		 0	 0	

Here, then, are the first few Bernoulli numbers, with odd-subscripted numbers = 0 after B1:231 

Number B0 B1 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20 
Value 1 ±1/2 1/6 -1/30 1/42 -1/30 5/66 -691/2730 7/6 -3617/510 43867/798 -174611/330 

Even though this sequence does not consist of integers, they still appear in the On-line Encyclopedia of 
Integer Sequences as: 

OEIS Definition 
A027641 Numerators of Bernoulli numbers Bn, with B1 = -½ 
A027642 Denominators of Bernoulli numbers Bn 
A000367 Numerators of Bernoulli numbers B2n 
A002445 Denominators of Bernoulli numbers B2n 

These apparently haphazard numbers, which get larger and larger in absolute terms, are of such central 
importance in mathematics, that Ada Lovelace showed how they could be calculated with Charles 
Babbage’s Analytical Engine, turning Bernoulli’s formulae into tabular form, published at the end of her 
memoir to Menabrea’s ‘Sketch of the Analytical Engine’ in 1843.232 Not surprisingly, she did not do so 
without considerable effort, saying in a letter to Babbage, “I am in much dismay at having got into so 
amazing a quagmire & botheration with these Numbers.”233 I know only too well how she felt, having 
worked through these formulae so that I had, at least, a tentative understanding of them. The program is 
on the next page, with the omitted rubric ‘Diagram for the computation by the Engine of the Numbers of 
Bernoulli’, far more complex than the initial programs that ran on the first stored-program computers 
over a century later. 

However, this was not the first program ever published. When Babbage gave a presentation of the 
Analytical Engine in Italy in 1840, he presented a procedure for solving a pair of simultaneous linear 
equations, which Luigi Menabrea, later to become prime minister of Italy, then published in French two 
years later.234 In effect, this was the publication of the world’s first program. Furthermore, even though 
Ada has been called the world’s first programmer, she was clearly much assisted by Babbage himself. 
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Generating functions 
When cataloguing sequences of mostly natural numbers in this section, I have focused attention on 
presenting the difference or recurrence equations that generate them and expressions for their nth terms. 
However, there is another way of presenting these terms: as coefficients of infinite series, like those in 
complex analysis, but generally treated in a somewhat different manner. 

These are the aptly named generating functions, which are often the polynomial expansions of closed-
form expressions, which can greatly assist with the understanding of integer sequences. De Moivre was 
the first to use generating functions in 1730 in Miscellanea analytica de seriebus et quadraturis, finding the 
closed form of the generating function for the Fibonacci sequence,235 leading to the solution to the 
general linear recurrence problem.236 

Then, in 1741, Euler began studying generating functions in order to find recurrence equations for 
integer partitions, eventually proving the pentagonal number theorem in 1775. But it was not until 1812 
when Pierre-Simon Laplace (1749–1827) coined the term fonction génératrice in Théorie Analytique des 
Probabilités,237 the technique having been in use for eighty years in combinatory analysis and the theories 
of probabilities and numbers.238  

When studying the intuitive way that Euler used generating functions, George Pólya wrote, “A 
generating function is a device somewhat similar to a bag. Instead of carrying many little objects 
detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to 
carry, the bag.”239 And in the words of Herbert S. Wilf in Generatingfunctionology, “A generating function 
is a clothesline on which we hang up a sequence of numbers for display.”240 

As Donald E. Knuth said, “the use of generating functions opens up a whole new range of techniques, 
and broadly increases our capacity for problem solving.”241 As he said in a book that he wrote with Ronald 
L. Graham and Oren Patashnik, “The most powerful way to deal with sequences of numbers … is to 
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manipulate infinite series that ‘generate’ those sequences.” They then showed an almost mechanical four-
step way of using generating functions to solve recurrence equations, which I have focused attention on in 
this section on sequences.242 Wilf gives another six-step method that generatingfunctionologists use. 

However, while human intuition is often important in experimental mathematics, WolframAlpha has 
a number of functions to automatically create sequences and generating functions. This raises the key 
psychological issue about the relationships between intuition and rationality and plausible and 
demonstrative reasoning (by formal proof), which must wait until another time. As this book is more 
concerned with categorizing the underlying patterns and basic concepts in mathematics than on problem 
solving or proving theorems, this is what this subsection focuses attention on. 

Wolfram MathWorld defines a generating function f(x) as a formal power series: 

𝑓(𝑥) =:𝑎c𝑥c
�

c=d

 

whose coefficients give the sequence {a0, a1, a2, …}, with the understanding that no value is assigned to 
the symbol x.243 

However, there are other types of generating functions that are useful in various circumstances, such as 
exponential generating functions (EGF),244 expressible as a variation of the power series expansion of the 
exponential function, which we look at later: 

𝐸(𝑥) =:𝑎𝑘
𝑥𝑘

𝑘!
= 𝑎0 + 𝑎1

𝑥

1!
+ 𝑎2

𝑥2

2!
+ ⋯

∞

𝑘=0

 

The first definition of a generating function is then named as an ordinary generating function 
(OGF).245 Indeed, there is no need to stop there. Comtet tells us that, like so much in mathematics, 
generating functions can be generalized to multiple sequences, the simplest being double sequences, 
useful in triangular sequences,246 such as Pascal’s triangle: 

Φ(𝑥, 𝑦) = : 𝑎",c𝑥"
",cÕd

𝑦c								Ψ(𝑥, 𝑦) = : 𝑎",c
𝑥"

𝑛!
",cÕd

𝑦c	
𝑘! 									Θ

(𝑥, 𝑦) = : 𝑎",c
𝑥"

𝑛!
",cÕd

𝑦c	 

So let us summarize the generating functions for the sequences we have looked at in this section. 

 
In terms of the figurate numbers, the most basic of the ordinary generating functions generates a 

constant sequence of 1’s, as the seed for all the others: 
1

1 − 𝑥
= 1 + 𝑥 + 𝑥A + 𝑥B + 𝑥F + ⋯ 

The corresponding exponential generating function is simply: 

𝑒Ø =:
𝑥c

𝑛!

�

"=d

= 1 +
𝑥
1! +

𝑥A

2! +
𝑥B

3! +⋯ 

This section mostly categorizes the OGFs, just mentioning the EGFs when the need arises. As there 
is sometimes some debate on whether a sequence begins at index 0 or 1, start with the former in the basic 
series, we should really multiply the initial generating function by x to set a0 = 0. However, to keep things 
as clear and simple as possible, this factor is omitted in the generating functions listed in this subsection. 
With this proviso, the basic figurate numbers are generated from increasing powers of this function 
multiplied by a polynomial, which follows an obvious pattern illustrated in this table: 
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 Corner polys Centred polys 
Seed 2-D 3-D 4-D 5-D Seed 2-D 3-D 4-D 5-D 

Triangular 
1

(1 − 𝑥)A
 1

(1 − 𝑥)B
 1

(1 − 𝑥)F
 1

(1 − 𝑥)I
 1

(1 − 𝑥)N
 𝑥A + 𝑥 + 1

(1 − 𝑥)A
 𝑥A + 𝑥 + 1

(1 − 𝑥)B
 𝑥A + 𝑥 + 1

(1 − 𝑥)F
 𝑥A + 𝑥 + 1

(1 − 𝑥)I
 𝑥A + 𝑥 + 1

(1 − 𝑥)N
 

Square 
𝑥 + 1
(1 − 𝑥)A

 𝑥 + 1
(1 − 𝑥)B

 𝑥 + 1
(1 − 𝑥)F

 𝑥 + 1
(1 − 𝑥)I

 𝑥 + 1
(1 − 𝑥)N

 𝑥A + 2𝑥 + 1
(1 − 𝑥)A

 𝑥A + 2𝑥 + 1
(1 − 𝑥)B

 𝑥A + 2𝑥 + 1
(1 − 𝑥)F

 𝑥A + 2𝑥 + 1
(1 − 𝑥)I

 𝑥A + 2𝑥 + 1
(1 − 𝑥)N

 

Pentagonal 
2𝑥 + 1
(1 − 𝑥)A

 2𝑥 + 1
(1 − 𝑥)B

 2𝑥 + 1
(1 − 𝑥)F

 2𝑥 + 1
(1 − 𝑥)I

 2𝑥 + 1
(1 − 𝑥)N

 𝑥A + 3𝑥 + 1
(1 − 𝑥)A

 𝑥A + 3𝑥 + 1
(1 − 𝑥)B

 𝑥A + 3𝑥 + 1
(1 − 𝑥)F

 𝑥A + 3𝑥 + 1
(1 − 𝑥)I

 𝑥A + 3𝑥 + 1
(1 − 𝑥)N

 

Hexagonal 
3𝑥 + 1
(1 − 𝑥)A

 3𝑥 + 1
(1 − 𝑥)B

 3𝑥 + 1
(1 − 𝑥)F

 3𝑥 + 1
(1 − 𝑥)I

 3𝑥 + 1
(1 − 𝑥)N

 𝑥A + 4𝑥 + 1
(1 − 𝑥)A

 𝑥A + 4𝑥 + 1
(1 − 𝑥)B

 𝑥A + 4𝑥 + 1
(1 − 𝑥)F

 𝑥A + 4𝑥 + 1
(1 − 𝑥)I

 𝑥A + 4𝑥 + 1
(1 − 𝑥)N

 

The general generating function for the Platonic numbers 𝑃𝑙R(𝑥) is not clear to me at the moment, for 
Deza and Deza do not seem to include it, and the OEIS Wiki page gives three functions depending on 
the number of vertices. So here are the particular generating functions that they provide: 

Platonic solid OEIS f(x) Series 

Tetrahedron A000292 
1

(1 − 𝑥)F
 1 + 4𝑥 + 10𝑥A + 20𝑥B + 35𝑥F + ⋯ 

Octahedron A005900 𝑥A + 2𝑥 + 1
(1 − 𝑥)F

 1 + 6𝑥 + 19𝑥A + 44𝑥B + 85𝑥F + ⋯ 

Cube A000578 𝑥A + 4𝑥 + 1
(1 − 𝑥)F

 1 + 8𝑥 + 27𝑥A + 64𝑥B + 125𝑥F + ⋯ 

Icosahedron A006564 6𝑥A + 8𝑥 + 1
(1 − 𝑥)F

 1+ 12𝑥 + 48𝑥A + 124𝑥B + 255𝑥F + ⋯ 

Dodecahedron A006566 10𝑥A + 16𝑥 + 1
(1 − 𝑥)F

 1 + 20𝑥 + 84𝑥A + 220𝑥B + 455𝑥F + ⋯ 

The general generating function for the centred Platonic numbers 𝐶𝑃𝑙R(𝑥) is:247 

𝐶𝑃𝑙R(𝑥) =
(1 + 𝑥)(1 + 2(𝑘R − 1)𝑥 + 𝑥A)

(1 − 𝑥)F  

where 𝑘R = {1, 2, 3, 5, 15} for 𝑉 = {4, 6, 8, 12, 20}, respectively. Here are the particular generating 
functions: 

Centred OEIS f(x) Series 

Tetrahedron A005894 (𝑥 + 1)(𝑥A + 1)
(1 − 𝑥)F

 1 + 5𝑥 + 15𝑥A + 35𝑥B + 69𝑥F + ⋯ 

Octahedron A001845 (𝑥 + 1)(𝑥A + 2𝑥 + 1)
(1 − 𝑥)F

 1 + 7𝑥 + 25𝑥A + 63𝑥B + 129𝑥F + ⋯ 

Cube A005898 
(𝑥 + 1)(𝑥A + 4𝑥 + 1)

(1 − 𝑥)F
 1 + 9𝑥 + 35𝑥A + 91𝑥B + 189𝑥F + ⋯ 

Icosahedron A005902 (𝑥 + 1)(𝑥A + 8𝑥 + 1)
(1 − 𝑥)F

 1+ 13𝑥 + 55𝑥A + 147𝑥B + 309𝑥F + ⋯ 

Dodecahedron A005904 (𝑥 + 1)(𝑥A + 28𝑥 + 1)
(1 − 𝑥)F

 1 + 33𝑥 + 155𝑥A + 427𝑥B + 909𝑥F + ⋯ 

Now, moving into the fourth dimension, here are the generating functions for the six regular polytopes 
in this dimension. 

4-D polytope OEIS f(x) Series 

5-cell A000332  
1

(1 − 𝑥)I
 1 + 5𝑥 + 15𝑥A + 35𝑥B + 70𝑥F + ⋯ 

16-cell A014820 (1 + 𝑥)B

(1 − 𝑥)I
 1 + 8𝑥 + 33𝑥A + 96𝑥B + 225𝑥F + ⋯ 

Tesseract A000583 𝑥B + 11𝑥A + 11𝑥 + 1
(1 − 𝑥)I

 1 + 16𝑥 + 81𝑥A + 256𝑥B + 625𝑥F + ⋯ 
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4-D polytope OEIS f(x) Series 

24-cell A092181 9𝑥B + 43𝑥A + 19𝑥 + 1
(1 − 𝑥)I

 1 + 24𝑥 + 153𝑥A + 544𝑥B + 1425𝑥F + ⋯ 

600-cell A092182 107𝑥B + 357𝑥A + 115𝑥 + 1
(1 − 𝑥)I

 1 + 120𝑥 + 947𝑥A + 3652𝑥B + 9985𝑥F + ⋯ 

120-cell A092183 543𝑥B + 1993𝑥A + 595𝑥 + 1
(1 − 𝑥)I

 1 + 600𝑥 + 4983𝑥A + 19468𝑥B + 53505𝑥F + ⋯ 

In higher dimensions, the generating functions for the sequences of powers, corresponding to 
hypercubes, arise from Worpitzky’s identity,248 which Julius Worpitzky (1835–1895) discovered in 1883:249 

𝑥" =:Æ
𝑛
𝑘Ç
J
𝑥 + 𝑘 − 1

𝑛
K

"

c=$

 

Thus the denominators are Eulerian polynomials, whose coefficients are Eulerian numbers A(n, k), 
defined on page 231. 

nm OEIS f(x) Series 

1 A000012 1
1 − 𝑥

 1 + 𝑥 + 𝑥A + 𝑥B + 𝑥F + ⋯ 

n A000027 
1

(1 − 𝑥)A
 1 + 2𝑥 + 3𝑥A + 4𝑥B + 5𝑥F + ⋯ 

n2 A000290 
𝑥 + 1
(1 − 𝑥)B

 1 + 4𝑥 + 9𝑥A + 16𝑥B + 25𝑥F + ⋯ 

n3 A000578 𝑥A + 4𝑥 + 1
(1 − 𝑥)F

 1+ 8𝑥 + 27𝑥A + 64𝑥B + 125𝑥F + ⋯ 

n4 A000583 𝑥B + 11𝑥A + 11𝑥 + 1
(1 − 𝑥)I

 1 + 16𝑥 + 81𝑥A + 256𝑥B + 625𝑥F + ⋯ 

n5 A000584 𝑥F + 26𝑥B + 66𝑥A + 26𝑥 + 1
(1 − 𝑥)N

 1 + 32𝑥 + 243𝑥A + 1024𝑥B + 3125𝑥F + ⋯ 

n6 A001014 𝑥I + 57𝑥F + 302𝑥B + 302𝑥A + 57𝑥 + 1
(1 − 𝑥)¦

 1 + 64𝑥 + 729𝑥A + 4096𝑥B + 15625𝑥F + ⋯ 

The generating functions for the nexus numbers, which act as gnomic seeds for the sequences of 
powers, are thus:  

d OEIS f(x) Series 

0 A000012 1
1 − 𝑥

 1 + 𝑥 + 𝑥A + 𝑥B + 𝑥F + ⋯ 

1 A005408 
𝑥 + 1
(1 − 𝑥)A

 1 + 3𝑥 + 5𝑥A + 7𝑥B + 9𝑥F + ⋯ 

2 A003215 𝑥A + 4𝑥 + 1
(1 − 𝑥)B

 1 + 7𝑥 + 19𝑥A + 37𝑥B + 61𝑥F + ⋯ 

3 A005917 𝑥B + 11𝑥A + 11𝑥 + 1
(1 − 𝑥)F

 1+ 15𝑥 + 65𝑥A + 175𝑥B + 369𝑥F + ⋯ 

4 A022521 𝑥F + 26𝑥B + 66𝑥A + 26𝑥 + 1
(1 − 𝑥)I

 1 + 31𝑥 + 211𝑥A + 781𝑥B + 2101𝑥F + ⋯ 

5 A022522 𝑥I + 57𝑥F + 302𝑥B + 302𝑥A + 57𝑥 + 1
(1 − 𝑥)N

 1 + 63𝑥 + 665𝑥A + 3367𝑥B + 11529𝑥F + ⋯ 

6 A022523 𝑥N + 120𝑥I + 1191𝑥F + 2416𝑥B + 1191𝑥A + 120𝑥 + 1
(1 − 𝑥)¦

 1 + 127𝑥 + 2059𝑥A + 14197𝑥B + 61741𝑥F + ⋯ 

Other examples of generating functions for polyhedral numbers are: 
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Polyhedron OEIS f(x) Series 

Truncated tetrahedron A005906 10𝑥A + 12𝑥 + 1
(1 − 𝑥)F

 1 + 16𝑥 + 68𝑥A + 180𝑥B + 375𝑥F + ⋯ 

Stellated octahedron A007588 𝑥A + 10𝑥 + 1
(1 − 𝑥)F

 1 + 14𝑥 + 51𝑥A + 124𝑥B + 245𝑥F + ⋯ 

Rhombic dodecahedron A005917 (𝑥 + 1)(𝑥A + 10𝑥 + 1)
(1 − 𝑥)F

 1 + 15𝑥 + 65𝑥A + 175𝑥B + 369𝑥F + ⋯ 

 
To find generating functions for Pascal’s triangle, the ordinary one for the diagonals/columns, 

representing the pyramidal simplexes is: 
𝑥 + 1

(1 − 𝑥)cE$ 

where k is the column number. The corresponding EGF is: 
(1 + 𝑘𝑥) ∙ 𝑒Ø 

However, it is also possible to find generating functions for the rows in Pascal’s triangle, using double 
expressions, as Comtet showed: 

Φ(𝑥, 𝑦) = : G
𝑛
𝑘H𝑥

"𝑦c =:𝑥" � : G
𝑛
𝑘H𝑦

c

dÙcÙ"

¡
"Õd",cÕd

=:𝑥"(1 + 𝑦)" =
1

1 − 𝑥(1 + 𝑦)
"Õd

= 1 + 𝑥(𝑦 + 1) + 𝑥A(𝑦 + 1)A + 𝑥B(𝑦 + 1)B + ⋯ 
Here, the coefficients of the expanded polynomials, as coefficients of the powers of x, give the rows in 

Pascal’s triangle. The corresponding mixed OGF and EGF is: 

Θ(𝑥, 𝑦) = 𝑒Ø($eÚ) = 1 +
1
1! 𝑥

(𝑦 + 1) +
1
2! 𝑥

A(𝑦 + 1)A +
1
3! 𝑥

B(𝑦 + 1)B +⋯ 

The corresponding double EGF (Ψ(𝑥, 𝑦))	involves Bessel functions and, as it is rather complicated, is 
not considered very interesting.250 

The generating functions for the multinomial triangles are derived directly from the polynomial 
(1 + 𝑥 + 𝑥A +⋯	𝑥5E$)" , with specific values for m, giving each row in the triangle as n increases. 
However, the generating functions for the central multinomial coefficients are somewhat more complex. 
As the Catalan numbers are related to the first of these, Thomas Koshy shows how to use the differential 
and integral calculus to develop its generating function and that of the Catalan numbers themselves in his 
comprehensive book on the subject.251 The first few are illustrated in this table, without proof: 

n OEIS f(x) Series 

Binomial A000984 
1

√1 − 4𝑥
 1 + 2𝑥 + 6𝑥A + 20𝑥B + 70𝑥F + ⋯ 

Trinomial A002426 
1

Û(1 + 𝑥)(1 − 3𝑥)
 1 + 𝑥 + 3𝑥A + 7𝑥B + 19𝑥F + ⋯ 

Quadrinomial A005721 See note. 1 + 4𝑥 + 44𝑥A + 580𝑥B + 8092𝑥F + ⋯ 

Quinquenomial A005191 Ü2√5𝑥
A − 6𝑥 + 1 − 5𝑥 + 2

25𝑥B − 10𝑥A − 19𝑥 + 4
 1+ 𝑥 + 5𝑥A + 19𝑥B + 85𝑥F + ⋯ 

Note: Mark van Hoeij, Professor at Florida State University, gives this way of generating the 
generating function for the central quadrinomial coefficients:252 

Let Z(x) be a solution of  
(−1 + 16𝑥) ∙ (32𝑥 − 27)A ∙ 𝑍N + 9(−9 + 64𝑥) ∙ (32𝑥 − 27) ∙ 𝑍F + 81(80𝑥 − 27) ∙ 𝑍A + 729 = 0					𝑍(0) = 1 

Compute a Puiseux series for Z(x) at x = 0, then Z(x) in 𝐶(√𝑥Þ ). Remove all non-integer powers of x. The result is the 
generating function for A005721. 
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Understanding what this means is beyond my abilities. Nevertheless, it seems to demonstrate an 
example of a generating function that is created through a procedure rather than one that is presented in 
closed form. 

 
There are many generating functions related to the Lucas, Fibonacci, and Pell numbers, revealing 

some generative patterns when viewed as a whole. Euler called such functions recurrent series, following 
DeMoivre.253 As a foundation, when (P, Q) = (k, -1) in Lucas’s characteristic equation, the discriminant 
√𝑘A + 4 plays a central role in the generation of the silver means, giving this generating function: 

Name OEIS f(x) Series 

Discriminant A087475 4 − 7𝑥 + 5𝑥A

1 − 3𝑥 + 3𝑥A − 𝑥B
 4 + 5𝑥 + 8𝑥A + 13𝑥B + 20𝑥F + 29𝑥I + ⋯ 

Each value of k generates a pair of sequences Un and Vn with these convergent limits: 

lim
"→�

𝑈"e$
𝑈"

= lim
"→�

𝑉"e$
𝑉"

=
𝑘 + √𝑘A + 4

2  

In the case of Un, each ratio of consecutive terms is a convergent of the continued fraction �𝑘; 𝑘��, with 
the denominators being the generated sequence and the numerators shifted over one to the left. Here are 
the generating functions for the first five pairs of Lucas sequences for the silver means. 

Name OEIS k Metal Root f(x) Series 

Fibonacci A000045 
1 Gold 1 + √5

2
 

𝑥
1 − 𝑥 − 𝑥A

 𝑥 + 𝑥A + 2𝑥B + 3𝑥F + 5𝑥I + ⋯ 

Lucas A000032 2 − 𝑥
1 − 𝑥 − 𝑥A

 2 + 𝑥 + 3𝑥A + 4𝑥B + 7𝑥F + 11𝑥I + ⋯ 

Pell A000129 
2 Silver 1 + √2 

𝑥
1 − 2𝑥 − 𝑥A

 𝑥 + 2𝑥A + 5𝑥B + 12𝑥F + 29𝑥I + ⋯ 

Pell-Lucas A002203 2 − 2𝑥
1 − 2𝑥 − 𝑥A

 2 + 2𝑥 + 6𝑥A + 14𝑥B + 34𝑥F + 82𝑥I + ⋯ 

 A006190 
3 Bronze 3 + √13

2
 

𝑥
1 − 3𝑥 − 𝑥A

 𝑥 + 3𝑥A + 10𝑥B + 33𝑥F + 109𝑥I + ⋯ 

 A006497 2 − 3𝑥
1 − 3𝑥 − 𝑥A

 2 + 3𝑥 + 11𝑥A + 36𝑥B + 119𝑥F + 393𝑥I + ⋯ 

 A001076 
4 Copper 2 + √5 

𝑥
1 − 4𝑥 − 𝑥A

 𝑥 + 4𝑥A + 17𝑥B + 72𝑥F + 305𝑥I + ⋯ 

 A014448 2 − 4𝑥
1 − 4𝑥 − 𝑥A

 2 + 4𝑥 + 18𝑥A + 76𝑥B + 322𝑥F + 1364𝑥I + ⋯ 

 — 
5 Nickel 5 + √29

2
 

𝑥
1 − 5𝑥 − 𝑥A

 𝑥 + 5𝑥A + 26𝑥B + 135𝑥F + 701𝑥I + ⋯ 

 A087130 2 − 5𝑥
1 − 5𝑥 − 𝑥A

 2 + 5𝑥 + 27𝑥A + 140𝑥B + 727𝑥F + 3775𝑥I + ⋯ 

In the cases of √2 and √5, A000129 and A001076 are also the denominators of their continued 
fraction convergents. However, as a0 = 1 and 2 in their continued fraction representations, rather than 
k = 2 and 4, the numerators have slightly different generating functions. For the convergents pi/qi of 
continued fractions are given by this general recurrence equation, with ai = k for all i for the relevant 
Lucas sequences:254 

𝑝<
𝑞<
=
𝑎<𝑝<E$ + 𝑝<EA
𝑎<𝑞<E$ + 𝑞<EA

							𝑝E$ = 1, 𝑞E$ = 0, 𝑝d = 𝑎d, 𝑞d = 1 

Indeed, all square roots of natural numbers can be represented as simple continued fractions, as we saw 
in Chapter 3, with 𝑎d = ß√𝑛à. So, their convergents have sequences of numerators and denominators, with 
related generating functions, which we can compare to those for the convergent integer solutions to Pell’s 
equation. 
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However, not all generating functions in the OEIS are presented in this way. What are called 
numerators and denominators of continued fraction convergents for √2, √3, √5, and √10 begin 1 and 0, 
respectively, as the zeroth terms, which are actually the values of p-1 and q-1. As this does make sense in 
this context, I have adjusted the generating functions for these roots. The numerators and denominators 
of the continued fraction convergents for √6, √7, and √8, not in the printed version of Sloane and 
Plouffe, The Encyclopedia of Integer Sequences, from 1995, are correct. In all cases, Mathematica and the 
WolframAlpha statements for continued fractions generate the correct tables for the numerators and 
denominators. 

Having resolved these inconsistencies, there are few obvious patterns in the generating functions for 
the convergents of these continued fractions, presumably because these lack discernible patterns 
themselves. 

Root OEIS f(x) Series 

√2 
A001333 1 + 𝑥

1 − 2𝑥 − 𝑥A
 1 + 3𝑥 + 7𝑥A + 17𝑥B + 41𝑥F + 99𝑥I + ⋯ 

A000129 1
1 − 2𝑥 − 𝑥A

 1 + 2𝑥 + 5𝑥A + 12𝑥B + 29𝑥F + 70𝑥I + ⋯ 

√3 
A002531 1 + 2𝑥 + 𝑥A − 𝑥B

1 − 4𝑥 + 𝑥A
 1 + 2𝑥 + 5𝑥A + 7𝑥B + 19𝑥F + 26𝑥I + ⋯ 

A002530 1 + 𝑥 − 𝑥A

1 − 4𝑥 + 𝑥A
 1 + 𝑥 + 3𝑥A + 4𝑥B + 11𝑥F + 15𝑥I + ⋯ 

√5 
A001077 2 + 𝑥

1 − 4𝑥 − 𝑥A
 2 + 9𝑥 + 38𝑥A + 161𝑥B + 682𝑥F + 2889𝑥I + ⋯ 

A001076 1
1 − 4𝑥 − 𝑥A

 1 + 4𝑥 + 17𝑥A + 72𝑥B + 305𝑥F + 1292𝑥I + ⋯ 

√6 
A041006 2 + 5𝑥 + 𝑥A − 𝑥B

1 − 10𝑥A + 𝑥F
 2 + 5𝑥 + 22𝑥A + 49𝑥B + 218𝑥F + 485𝑥I + ⋯ 

A041007 1 + 2𝑥 − 𝑥A

1 − 10𝑥A + 𝑥F
 1 + 2𝑥 + 9𝑥A + 20𝑥B + 89𝑥F + 198𝑥I + ⋯ 

√7 
A041008 2 + 3𝑥 + 5𝑥A + 8𝑥B + 5𝑥F − 3𝑥I + 2𝑥N − 𝑥¦

1 − 16𝑥F + 𝑥S
 2 + 3𝑥 + 5𝑥A + 8𝑥B + 37𝑥F + 45𝑥I + ⋯ 

A041009 1 + 𝑥 + 2𝑥A + 3𝑥B − 2𝑥F + 𝑥I − 𝑥N

1 − 16𝑥F + 𝑥S
 1 + 𝑥 + 2𝑥A + 3𝑥B + 14𝑥F + 17𝑥I + ⋯ 

√8 
A041010 2 + 3𝑥 + 2𝑥A − 𝑥B

1 − 6𝑥A + 𝑥F
 2 + 3𝑥 + 14𝑥A + 17𝑥B + 82𝑥F + 99𝑥I + ⋯ 

A041011 1 + 𝑥 − 𝑥A

1 − 6𝑥A + 𝑥F
 1 + 𝑥 + 5𝑥A + 6𝑥B + 29𝑥F + 35𝑥I + ⋯ 

√10 
A005667 3 + 𝑥

1 − 6𝑥 − 𝑥A
 3 + 19𝑥 + 37𝑥A + 228𝑥B + 1405𝑥F + 8658𝑥I + ⋯ 

A005668 1
1 − 6𝑥 − 𝑥A

 1 + 6𝑥 + 37𝑥A + 228𝑥B + 1405𝑥F + 8658𝑥I + ⋯ 

In comparison, the generating functions for the integer solutions to Pell’s equations 𝑥A − 𝑑𝑦A = 1 
generate a pair of sequences whose ratios of corresponding terms converge on √𝑑, much faster than for 
the convergents of the continued fractions. Here, the zeroth terms are (1, 0), with the coefficients of x 
being the same as for the series for the convergents of the continued fractions, with the exception of √7, 
giving these expressions: 

Root OEIS f(x) Series 

√2 
A001541 1 − 3𝑥

1 − 6𝑥 + 𝑥A
 1 + 3𝑥 + 17𝑥A + 99𝑥B + 577𝑥F + 3363𝑥I + ⋯ 

A001542 2𝑥
1 − 6𝑥 + 𝑥A

 2𝑥 + 12𝑥A + 70𝑥B + 408𝑥F + 2378𝑥I + ⋯ 

√3 A001075 1 − 2𝑥
1 − 4𝑥 + 𝑥A

 1 + 2𝑥 + 7𝑥A + 26𝑥B + 97𝑥F + 362𝑥I + ⋯ 
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Root OEIS f(x) Series 

A001353 
𝑥

1 − 4𝑥 + 𝑥A
 𝑥 + 4𝑥A + 15𝑥B + 56𝑥F + 209𝑥I + ⋯ 

√5 
A023039 1 − 9𝑥

1 − 18𝑥 + 𝑥A
 1 + 9𝑥 + 161	𝑥A + 2889	𝑥B + 51841	𝑥F + 930249	𝑥I + ⋯ 

A060645 4𝑥
1 − 18𝑥 + 𝑥A

 4𝑥 + 72𝑥A + 1292𝑥B + 23184𝑥F + 416020𝑥I + ⋯ 

√6 
A001079 1 − 5𝑥

1 − 10𝑥 + 𝑥A
 1 + 5𝑥 + 49𝑥A + 485𝑥B + 4801𝑥F + 47525𝑥I + ⋯ 

A001078 2𝑥
1 − 10𝑥 + 𝑥A

 2𝑥 + 20𝑥A + 198𝑥B + 1960𝑥F + 19402𝑥I + ⋯ 

√7 
A001081 1 − 8𝑥

1 − 16𝑥 + 𝑥A
 1 + 8𝑥 + 127𝑥A + 2024𝑥B + 32257𝑥F + 514088𝑥I + ⋯ 

A001080 3𝑥
1 − 16𝑥 + 𝑥A

 3𝑥 + 48𝑥A + 765𝑥B + 12192𝑥F + 194307𝑥I + ⋯ 

√8 
A001541 1 − 3𝑥

1 − 6𝑥 + 𝑥A
 1 + 3𝑥 + 17𝑥A + 99𝑥B + 577𝑥F + 3363𝑥I + ⋯ 

A001109 𝑥
1 − 6𝑥 + 𝑥A

 𝑥 + 6𝑥A + 35𝑥B + 204𝑥F + 1189𝑥I + ⋯ 

√10 
A078986 1 − 19𝑥

1 − 38𝑥 + 𝑥A
 1 + 19𝑥 + 721𝑥A + 27379𝑥B + 1039681𝑥F + 39480499𝑥I + ⋯ 

A084070 6𝑥
1 − 38𝑥 + 𝑥A

 6𝑥 + 228𝑥A + 8658𝑥B + 328776𝑥F + 12484830𝑥I + ⋯ 

Unlike the generating functions for the convergents of the continued fractions for square roots, the x- 
and y-value solutions to Pell’s equation do follow a pattern, related to the generating function for 
Chebyshev polynomials,255 named after Pafnuty Chebyshev (1821–1894).256 The Chebyshev polynomials of 
the first and second kind are formed from these recurrence equations, closely related to those for the 
Lucas sequences: 

𝑇"e$(𝑡) = 2𝑡𝑇"(𝑡) − 𝑇"E$(𝑡)																	𝑇d(𝑡) = 1,					𝑇$(𝑡) = 𝑡 
𝑈"e$(𝑡) = 2𝑡𝑈"(𝑡) − 𝑈"E$(𝑡)																	𝑈d(𝑡) = 0,					𝑈$(𝑡) = 2𝑡 

The general generating function for the x-value solutions to Pell’s equation is then the generating 
function for the Chebyshev polynomials of the first kind: 

1 − 𝑡𝑥
1 − 2𝑡𝑥 + 𝑥A = 1 + 𝑡𝑥 + (2𝑡A − 1)𝑥A + (4𝑡B − 3𝑡)𝑥B + (8𝑡F − 8𝑡A + 1)𝑥F + (16𝑡B − 20𝑡B + 5𝑡)𝑥I +⋯ 

And the general generating function for the y-value solutions to Pell’s equation is the generating 
function for the Chebyshev polynomials of the second kind multiplied by an additional factor u: 

𝑢𝑥
1 − 2𝑡𝑥 + 𝑥A = 𝑢𝑥 + 2𝑢𝑡𝑥A + 𝑢(4𝑡A − 1)𝑥B + 𝑢(8𝑡B − 4𝑡)𝑥F + 𝑢(16𝑡F − 12𝑡A + 1)𝑥I + ⋯ 

The sequences of parameters t and u for the smallest positive integers x and y satisfying Pell’s equation 
for nonsquare d are: 

√𝑑  2 3 5 6 7 8 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27 28 29 
A033313 t 3 2 9 5 8 3 19 10 7 649 15 4 33 17 170 9 55 197 24 5 51 26 127 9801 
A033317 u 2 1 4 2 3 1 6 3 2 180 4 1 8 4 39 2 12 42 5 1 10 5 24 1820 

There is no discernible pattern in these sequences, except that the ratios of their corresponding terms 
grow steadily as the initial values for the convergence on √𝑑. Perhaps the most pertinent observation is 
that the values of t and u take a jump at d = 13 and 29, the roots in the discriminants of Lucas’s 
characteristic equation for (P, Q) = (k, -1), which generate the silver means. This is unlikely to be a 
coincidence. So maybe there is an explanation. 

Finally, here are the generating functions for (𝑃, 𝑄) = (3, 2)  in Lucas’s characteristic equation, 
generating the Mersenne and Fermat numbers: 
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Name OEIS f(x) Series 

Mersenne A000225 
𝑥

(1 − 𝑥)(1 − 2𝑥)
 𝑥 + 3𝑥A + 7𝑥B + 15𝑥F + 37𝑥I + ⋯ 

Fermat A000051 
2 − 3𝑥

(1 − 𝑥)(1 − 2𝑥)
 1 + 3𝑥 + 5𝑥A + 9𝑥B + 17𝑥F + ⋯ 

 
As the generating function for the Catalan numbers does not have the simple form of a polynomial 

with integer coefficients divided by a similar polynomial, like most others in this subsection, it is 
instructive to look at how it can be constructed. In the letters that Euler and Goldbach exchanged from 
September to December 1751, Euler showed how this generating function A(x) could be created from his 
knowledge of the binomial formula:257 

𝐴(𝑥) = 1 + 2𝑥 + 5𝑥A + 14𝑥B + 42𝑥F + 132𝑥I +⋯ =
1 − 2𝑥 − √1 − 4𝑥

2𝑥A  

Goldbach responded by saying that A(x) satisfies this quadratic equation: 
1 + 𝐴(𝑥) = 𝐴(𝑥)

$
A 

However, as this omits C0, we need a slightly simpler generating function to include it, as Tom Davis 
showed in 2018.258 First, we define the generating function in abstract terms thus: 

𝑓(𝑥) = 𝐶d + 𝐶$𝑥 + 𝐶A𝑥A + 𝐶B𝑥B +⋯ 

Now multiplying f(x) by itself gives: 

[𝑓(𝑥)]A = 𝐶d𝐶d + (𝐶$𝐶d + 𝐶d𝐶$)𝑥 + (𝐶A𝐶d + 𝐶$𝐶$ + 𝐶d𝐶A)𝑥A + ⋯ 

But the coefficients here are those in Segner’s recurrence equation, with C0 = 1, giving 

𝑓(𝑥) = 1 + 𝑥[𝑓(𝑥)]A 
Solving this quadratic equation gives the closed-form expression for the generating function for the 

Catalan numbers (OEIS A000108): 

𝑓(𝑥) =
1 − √1 − 4𝑥

2𝑥 = 1 + 𝑥 + 2𝑥A + 5𝑥B + 14𝑥F + ⋯ 

 
Euler made the first significant use of generating functions in the history of this subject in his study of 

integer partitions, rather than the recurrence equations with which I introduced the subject on page 221. 
To present a few of these, I begin with those for P(n, k), whose generative pattern is clear. 

Name OEIS f(x) Series 

P(n, 1) A000012 
1

1 − 𝑥
 1 + 𝑥 + 𝑥A + 𝑥B + 𝑥F + 𝑥I + 𝑥N + ⋯ 

P(n, 2) A004526 
1

(1 − 𝑥)(1 − 𝑥A)
 1 + 𝑥 + 2𝑥A + 2𝑥B + 3𝑥F + 3𝑥I + 4𝑥N + ⋯ 

P(n, 3) A001399 
1

(1 − 𝑥)(1 − 𝑥A)(1 − 𝑥B)
 1 + 𝑥 + 2𝑥A + 3𝑥B + 4𝑥F + 5𝑥I + 7𝑥N + ⋯ 

P(n, 4) A001400 
1

(1 − 𝑥)(1 − 𝑥A)(1 − 𝑥B)(1 − 𝑥F)
 1 + 𝑥 + 2𝑥A + 3𝑥B + 5𝑥F + 6𝑥I + 9𝑥N + ⋯ 

P(n, 5) A001401 
1

(1 − 𝑥)(1 − 𝑥A)(1 − 𝑥B)(1 − 𝑥F)(1 − 𝑥I)
 1 + 𝑥 + 2𝑥A + 3𝑥B + 5𝑥F + 7𝑥I + 10𝑥N + ⋯ 

P(n, 6) A001402 
1

(1 − 𝑥)(1 − 𝑥A)(1 − 𝑥B)(1 − 𝑥F)(1 − 𝑥I)(1 − 𝑥N)
 1 + 𝑥 + 2𝑥A + 3𝑥B + 5𝑥F + 7𝑥I + 11𝑥N + ⋯ 
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Here are some generating functions for the complete partition numbers and a few of their subsets we 
looked at earlier. 

Name OEIS f(x) Series 

p(n) A000041 oJ
1

1− 𝑥c
K

�

c=$

 1 + 𝑥 + 2𝑥A + 3𝑥B + 5𝑥F + 7𝑥I + 11𝑥N + ⋯ 

q(n) A000009 o(1+ 𝑥c)
�

c=$

 1 + 𝑥 + 𝑥A + 2𝑥B + 2𝑥F + 3𝑥I + 4𝑥N + ⋯ 

Even q(n) A067661  1 + 𝑥B + 𝑥F + 2𝑥I + 2𝑥N + 3𝑥¦ + 3𝑥S + ⋯ 

Odd q(n) A067659  𝑥 + 𝑥A + 𝑥B + 𝑥F + 𝑥I + 2𝑥N + 2𝑥¦ + 3𝑥S + ⋯ 

Even q(n)-odd q(n) A010815  1 − 𝑥 − 𝑥A + 𝑥I + 𝑥¦ − 𝑥$A − 𝑥$I + 𝑥AA … 

Generalized 
Pentagonal Numbers A001318 

1 + 𝑥 + 𝑥A

(1 + 𝑥)A(1 − 𝑥)B
 1 + 2𝑥 + 5𝑥A + 7𝑥B + 12𝑥F + 15𝑥I + 22𝑥N + ⋯ 

G(n) A003114 o
1

(1 − 𝑥IcE$)(1 − 𝑥IcEF)

�

c=$

 1 + 𝑥 + 𝑥A + 𝑥B + 2𝑥F + 2𝑥I + 3𝑥N + ⋯ 

H(n) A003106 o
1

(1 − 𝑥IcEA)(1 − 𝑥IcEB)

�

c=$

 1 + 𝑥A + 𝑥B + 𝑥F + 𝑥I + 2𝑥N + ⋯ 

 
Although I approached the Stirling numbers from the perspective of recurrence equations on page 229, 

Stirling originally defined them in terms of what we call generating functions today, which greatly helps 
the understanding. The Stirling numbers of the first kind are the coefficients s(n, k) in the expansion of 
the falling factorial 

(𝑥)" = 𝑥" = 𝑥(𝑥 − 1)(𝑥 − 2)… (𝑥 − 𝑛 + 1) 
into powers of the variable x. For instance,  

𝑥F = 𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3) = 𝑥F − 6𝑥B + 11𝑥A − 6𝑥 
So, reversing the coefficients, to match the fourth row in the Stirling triangle, s(4, 1) = -6, s(4, 2) = 11, 

s(4, 3) = -6, and s(4, 4) = 1. In turn, the unsigned Stirling numbers of the first kind are the coefficients 
c(n, k) in the expansion of the rising factorial 

𝑥(") = 𝑥" = 𝑥(𝑥 + 1)(𝑥 + 2)…(𝑥 + 𝑛 − 1) 
into powers of the variable x. For instance,  

𝑥Fâ = 𝑥(𝑥 + 1)(𝑥 + 2)(𝑥 + 3) = 𝑥F + 6𝑥B + 11𝑥A + 6𝑥 
Creating a generating function for the Stirling numbers of the second kind and hence for the Bell 

numbers, is far from simple, as Khristo N. Boyadzhiev explains in a paper from 2018 that I found on the 
Web titled ‘Close Encounters with the Stirling Numbers of the Second Kind’. So, I’ll leave this puzzle for 
the moment. 

 
There doesn’t appear to be any generating function for the Lah numbers, as a whole, signed or 

unsigned. However, the exponential generating function for the kth column of the unsigned Lah numbers 
is: 

1
𝑘! G

𝑥
1 − 𝑥H

c
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Here are the exponential generating functions for the first five columns, together with the formulae for 
the nth term, from the general formula on page 232. 

k OEIS nth term EGF 

1 A000142 𝑛! 𝑥
1 − 𝑥 =

𝑥
1! +

2𝑥A

2! +
6𝑥B

3! +
24𝑥F

4! +
120𝑥I

5! + ⋯ 

2 A001286 𝑛! (𝑛 − 1)/2 𝑥A

2(1− 𝑥)A =
𝑥A

2! +
6𝑥B

3! +
36𝑥F

4! +
240𝑥I

5! +
1800𝑥N

6! + ⋯ 

3 A001754 𝑛!𝐶(𝑛 − 1,2)/3! 𝑥B

6(1− 𝑥)B =
𝑥B

3! +
12𝑥F

4! +
120𝑥I

5! +
1200𝑥N

6! +
12600𝑥¦

6! + ⋯ 

4 A001755 𝑛!𝐶(𝑛 − 1,3)/4! 𝑥F

24(1− 𝑥)F =
𝑥F

4! +
20𝑥I

5! +
300𝑥N

6! +
4200𝑥¦

7! +
58800𝑥S

8! + ⋯ 

5 A001777 𝑛!𝐶(𝑛 − 1,4)/5! 𝑥I

120(1− 𝑥)I =
𝑥I

5! +
30𝑥N

6! +
630𝑥¦

7! +
11760𝑥S

8! +
211680𝑥§

9! +⋯ 

The ordinary generating functions for the first three diagonals after the 1’s are: 

L(n, n-j) OEIS nth term OGF 

L(n, n-1) A002378 𝑛(𝑛 − 1) 
2𝑥

(1 − 𝑥)B = 2𝑥 + 6𝑥A + 12𝑥B + 20𝑥F + 30𝑥I +⋯ 

L(n, n-2) A083374 𝑛A(𝑛A − 1)/2 −
6𝑥(𝑥 + 1)
(𝑥 − 1)I = 6𝑥 + 36𝑥A + 120𝑥B + 300𝑥F + 630𝑥I +⋯ 

L(n, n-3) A253285 𝑛(𝑛 + 1)A(𝑛 + 2)A(𝑛 + 3)/6 −
24

(𝑥 − 1)F −
144

(𝑥 − 1)I −
240

(𝑥 − 1)N −
120

(𝑥 − 1)¦

= 24𝑥 + 240𝑥A + 1200𝑥B + 4200𝑥F + 11760𝑥I + ⋯ 

The e.g.f.’s for the sum of the rows of the signed/unsigned Lah numbers (OEIS A293125 and 
A000262), with offset 0, are: 

𝑒∓Ø/($EØ) = 1 ∓ 𝑥 +
3𝑥A

2! ∓
13𝑥B

3! +
73𝑥F

4! ∓
501𝑥I

5! + ⋯ 

 
Finally, the generating functions for the first five diagonals in Euler’s number triangle are: 

OEIS f(x) Series 

A000012 1
1 − 𝑥

 1 + 𝑥 + 𝑥A + 𝑥B + 𝑥F + ⋯ 

A000295 
1

(1 − 2𝑥)(1 − 𝑥)A
 1 + 4𝑥 + 11𝑥A + 26𝑥B + 57𝑥F + ⋯ 

A000460 1 + 𝑥 − 4𝑥A

(1 − 3𝑥)(1 − 2𝑥)A(1 − 𝑥)B
 1 + 11𝑥 + 66𝑥A + 302𝑥B + 1191𝑥F + ⋯ 

A000498 1 + 6𝑥 − 43𝑥A + 44𝑥B + 52𝑥F − 72𝑥I

(1 − 4𝑥)(1 − 3𝑥)A(1 − 2𝑥)B(1 − 𝑥)F
 1 + 26𝑥 + 302𝑥A + 2416𝑥B + 15619𝑥F

+ ⋯ 

A000505 1 + 22𝑥 − 244𝑥A + 442𝑥B + 2575𝑥F − 12012𝑥I + 17828𝑥N − 5664𝑥¦ − 9552𝑥S + 6912𝑥§

(1 − 5𝑥)(1 − 4𝑥)A(1 − 3𝑥)B(1 − 2𝑥)F(1 − 𝑥)I
 1 + 57𝑥 + 1191𝑥A + 15619𝑥B

+ 156190𝑥F + ⋯ 

Spirals 
One aspect of the Golden Ratio or Divine Proportion that I did not mention when exploring the 
Fibonacci sequence on page 202 is the Golden Spiral. For this topic raises a host of mathematical, causal, 
and aesthetic issues that need a distinct section, even another book, to deal with satisfactorily. 

To set the Golden Spiral in context, I begin this section with a mathematical overview of some of the 
principal types of spiral, such as logarithmic, Archimedes, and Fermat’s spirals. As spirals are a prime 
example of the growth of structure in the manifest Universe, it is not surprising that we see them in the 
world around us, in the plant and animal kingdoms and even in galaxies. 
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These structures raise the critical issue of how have they have come into being. What causes the 
sunflower, for instance, to grow as it does? Scientists have proposed many answers to this question. But 
they all fall short unless we admit the creative power of Life—emerging directly from the Divine Origin 
of the Universe—into our scientific reasoning. 

The cultural split between spirituality and science has also led to extreme aesthetic positions being 
taken in the arts. While some attempt to say that some ubiquitous mathematical structure underlies 
music, painting, and architecture, for instance, others go out of their way to debunk such attributions. 

All these issues can be resolved when we see that mathematical structures reside in the Cosmic Psyche, 
inaccessible to our physical senses. By unifying mysticism and mathematics, the central theme of this 
book, we can then not only understand the underlying causality and aesthetics of art and nature, we can 
also apply the same principles to understand why we humans behave in the way that we do. 

As there is as much confusion in this branch of mathematics as there is in the world of learning at 
large, let us shed some light on the topic of spirals to see what is revealed.   

Mathematical perspective 
As Fibonacci and other sequences represent growth patterns, it is not surprising that we find these 
patterns in plants and other structures in the material universe. What is of particular interest here is the 
world of spirals, indicating continuous growth at different rates, departing, for the moment, from step-
wise growth. In this book, we need to consider only three types, where growth is geometric, arithmetic, or 
diminishing, as we see in the logarithmic, Archimedes’, and Fermat’s spirals, depicted here, with the 
general functions in polar form that generate them. 

Logarithmic spiral Archimedes’ spiral Fermat’s spiral 

   
𝑟(𝜃) = 𝑎 ∙ 𝑏å 𝑟(𝜃) = 𝑎 + 𝑏 ∙ 𝜃 𝑟(𝜃) = 𝑎√𝜃 

Sometimes, when plotting spirals, or, indeed, any polar equation, it is more convenient to express them 
parametrically thus: 

𝑥 = 𝑟(𝜃) cos𝜃 
𝑦 = 𝑟(𝜃) sin𝜃 

For instance, by changing the signs of x and y, the spirals are reflected in the y- and x-axes, respective-
ly. By changing both signs, reflective symmetries become a rotational symmetry, in this case by 180°. We 
look further at symmetries in Chapter 5 in the section on ‘Abstract Algebra’. 

The first mention of spirals in the mathematical literature was On Spirals, by Archimedes of Syracuse 
(c. 287–c. 212 BCE), written after the death of his friend Conon of Samos (c. 280–c. 220 BCE),259 who 
Pappus of Alexandria (c. 290–c. 350) thought had first studied what is today called Archimedes’ spiral. 
However, as Archimedes was in the habit of sharing his discourses with Conon before their publication, 
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Thomas Heath is doubtful of this attribution.260 Archimedes premised the definition of a spiral in this 
way, demonstrating the clarity of his writings:  

If a straight line one extremity of which remains fixed is made to revolve at a uniform rate in a plane until it returns to 
the position from which it started, and if, at the same time as the straight line is revolving, a point moves at a uniform 
rate along the straight line, starting from the fixed extremity, the point will describe a spiral in the plane.261 
Fermat introduced his spiral in 1636,262 although it is not clear in which publication. In Wolfram 

MathWorld, Eric W. Weisstein defines both Archimedes and Fermat’s spirals as special cases of what he 
calls Archimedean Spirals,263 with this polar equation: 

𝑟 = 𝑎𝜃
$
" 

where n is an integer, positive or negative. So Archimedes and Fermat’s spirals are Archimedian spirals 
with n = 1 and 2, respectively, which is a bit confusing elsewhere in the literature, where Archimedes’ 
spiral is sometimes referred to as an Archimedian spiral. I’ll return to Fermat’s spiral when we look at 
phyllotaxis. 

 
In the meantime, let us look at logarithmic spirals, which René Descartes (1608–1647) began studying 

in 1638,264 the year after the publication of La géométrie, as one of three examples of his method of seeking 
the truth in the sciences. Evangelista Torricelli (1596–1650) then independently showed in 1645 with 
infinitesimal methods, before the calculus was discovered, that the total length of a logarithmic spiral 
could be rectified, that is calculated exactly, a possibility that Descartes had rejected in Geometry.265 

However, the logarithmic spiral is most closely associated with Jakob Bernoulli, who in the 1690s 
called it spira mirabilis ‘miraculous spiral’ because, although it is constantly changing, it always remains 
the same no matter how much it is scaled,266 with the genuine property of self-similarity, known as 
homothety ‘similar to itself’ before fractals were discovered. 

To understand what this means, I first convert the geometric polar equation I used to draw the above 
diagram267 into an exponential polar equation: 

𝑟 = 𝑎𝑒cå 
where 𝑘 = ln 𝑏. So, if b < or > 1, k < or > 0, respectively. When k = 0, the logarithmic spiral degenerates 

into a circle. So, if we set the scaling factor a as 1, the logarithmic spiral spirals inwards and outwards to 0 
and ∞ from 1, where θ = 0. When k < or > 0, the spiral spirals inwards and outwards when θ > or < 0, 
respectively. This is unlike Archimedean spirals, which only spiral outwards from 0. 

Now, to calculate the radial angle, we first need to determine the rate of change of the radius, which is: 
𝑑𝑟
𝑑𝜃 = 𝑟′ = 𝑎𝑘𝑒cå = 𝑘𝑟 

The angle 𝛼 between the tangent and the radial line at point (𝑟, 𝜃) is then:268 

𝛼 = tanE$
𝑟
𝑟′ = tan

E$ 1
𝑘 =cot

E$ 𝑘 

Angle 𝛼  is thus a constant, which is why the logarithmic spiral is also called equiangular. The 
logarithmic spiral can thus also be defined as: 

𝑟 = 𝑎𝑒åÉêp ¯	

In this representation, when 𝛼 = «
A

, 𝑘 = cot 𝛼 = ëìí¯
íîï¯

= 0 , and the spiral 
becomes a circle. Thus, when k < or > 0, 𝛼 is > or < «

A
, respectively.  

There is some confusion in the literature in this regard. The angle 𝛼  is 
normally defined as the angle between the radial and tangential vectors, as 
illustrated in this diagram, adapted from one in the GeoGebra library. 269 
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However, Wikipedia defines the constant angle as that of the tangent to the spiral and the corresponding 
polar circle, which is perpendicular to a ray from the centre of the spiral. This ‘polar slope angle’ 𝛽 is thus 
𝛽 = «

A
− 𝛼 giving the polar slope tan𝛽 = cot 𝛼, and the polar equation: 

𝑟 = 𝑎𝑒å pð" °	
Adding to the confusion, I have sometimes seen 𝛼 referred to as the ‘polar tangential angle’. 

So, how does the Golden Spiral, based on the Fibonacci sequence, 
fit in here? Well, the Fibonacci spiral helps us to understand this from 
this diagram in Wikipedia. The dimensions of the rectangle are 34:21, 
which approximates to the aspect ratio of the Golden Rectangle, 
which is 𝜑:1. As an approximation to the Golden Spiral, quarter arcs 
are drawn in each square, diminishing by a factor that is approximately 

the reciprocal of 𝜑, although “the true spiral cuts the squares at very small angles,” Coxeter tells us.270 
Reversing the perspective, the Golden Spiral grows by a factor of 𝜑 as θ increases by 𝜋 2³ . For every full 

rotation of 360 degrees or 2π radians, the Golden Spiral expands by a factor of 𝜑F = 6.85. So, using the 
geometric form of the logarithmic spiral, b, as the rate of growth per radian, is given by:271 

𝑏 = 𝜑
A
« ≈ 1.3585 

The polar equation for the Golden Spiral is thus: 

𝑟 = 𝑒åóï	(¶
m
ô) ≈ 𝑒d.BdNBõ ≈ 𝑒å ëìö¦A.§¦ 

with the radial angle 𝛼 in degrees. 
What this means is that there are different ways to measure the 

rate of growth in a logarithmic, equiangular spiral, making it 
difficult sometimes to make comparisons. For instance, this 
diagram from Wikipedia shows how a logarithmic spiral with a 
growth factor of 1.1923 per radian matches the growth of a 
chambered nautilus (Nautilus pompilius) quite well, a lot less than 
1.3585. 272  In contrast, Clement Falbo measured a collection of 
chambered nautiluses in the California Academy of Sciences in 
San Francisco in terms of growth per 90 degrees, easier, in practice, to measure. The measured ratios 
ranged from 1.24 to 1.43, and the average was 1.33, which he compares to 1.618, the Golden Ratio. In terms 
of growth rates per radian, the ranges were 1.15 to 1.26, with an average of 1.2. Also, the polar slope angle 
of the example in Wikipedia is approximately 10°, or 80°, as the more conventional radial slope angle.273  

Despite these different ways of measuring logarithmic spirals in the chambered nautilus, it is quite 
clear that its growth rate falls far short of that of the golden spiral, contrary to many claims to the 

contrary, such as that of Priya Hemenway, who has placed the 
chambered nautilus on the front cover of her book Divine Proportion, 
declaring the ubiquity of the Golden Ratio in architecture, art, music, 
nature, science, and mysticism.274 

As well as modelling the growth of forms of life in the animal 
kingdom, spirals can also be used to model creative growth in the 
hylosphere. The most vivid example is the Whirlpool Galaxy, which 
Charles Messier (1730–1817) discovered in 1773 when charting the skies 
looking for objects that might be confused with comets.275 What is 
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known today as M51 is 31 million light-years from Earth in the constellation Canes Venatici,276 this 
photo having been taken in January 2005 with the Advanced Camera for Surveys aboard the NASA/ESA 
Hubble Space Telescope.277 

In 1845, William Parsons (1800–1867), using the most powerful telescope in the world, noticed the 
spirals in the galaxy, the first of many to be discovered. At the time, Parsons was the Earl of Rosse, 
building a 72″ telescope on his estate in Ireland, known as the ‘Leviathan of Parsonstown’,278 not unlike 
the way that Tycho Brahe, a Danish nobleman, had built a telescope in the late 1500s on the island of 
Hven, enabling Kepler to later discover that the planets circle the Sun in ellipses. 

NASA tells us that the winding arms of the majestic spirals are star-formation factories, compressing 
hydrogen gas to create clusters of new stars.279 And as the website for the Hubble Space Telescope tells 
us, “the Whirlpool’s most striking feature is its two curving arms, a hallmark of so-called grand-design 
spiral galaxies,”280 emanating from a black hole, which is thought to exist at the heart of the spiral.281 

 
Returning to discrete models of growth, these can be most clearly applied to plant morphogenesis, in 

the way that leaves or florets grow, known as phyllotaxis ‘the arrangement of leaves on a plant stem’, from 
Greek phullon ‘leaf’ and taxis arrangement’, a word that Charles Bonnet (1720–1793) coined in 1754.282 As 
Roger V. Jean tells us in Phyllotaxis: A Systemic Study in Plant Morphogenesis, from 1994, “In various areas 
of botany, phyllotaxis is often considered to be the most striking phenomenon and the toughest subject, 
raising the most difficult questions.” To address these as clearly as possible, he set out in this monograph 
“to present a universal theory of phyllotaxis”,283 musing, in particular in Part III ‘Origins of phylogenetic 
patterns’, on the central problem of causality. 

To provide an overview of the subject, Jean wrote a paper in 1997 with Irving Adler and Denis Barabé 
on ‘A History of the Study of Phyllotaxis’. They write, “We have divided the history of the study of 
phyllotaxis into three periods: (1) the Ancient Period (up to the fourteenth century); (2) the Modern 
Period (from the fifteenth century to 1970); and (3) the Contemporary Period (from 1970 onwards).” 
Although the third is the shortest period, “it contains at least half of the most meaningful developments 
in the history of phyllotaxis research.”284 Nevertheless, there are still many unanswered questions. The 
principal reason for these unanswered questions is that we cannot understand phyllotaxis in its Cosmic 
Context, or any other subject for that matter, without understanding why the pace of scientific discovery 
is accelerating at unprecedented exponential rates of acceleration. 

So, to understand the way that plants grow in our gardens, we first need to understand ourselves, in 
how the Divine power of Life and the Logos guide our creativity within the Cosmic Psyche that we all 
share, that vast part of the Universe that is inaccessible to our physical senses, including the whole of 
mathematics. That, in essence, is what I am endeavouring to do in this book on Unifying Mysticism and 
Mathematics. However, as rational, systemic introspection lies far beyond what is considered acceptable in 
scientific circles today, all I can do for the moment is summarize the situation as it exists in my external 
world, trusting that one day any outstanding questions could be answered. 

As I read the situation, being new to the subject, there are unanswered questions in both causality and 
mathematics. Regarding these questions, Jean regards Arthur Harry Church (1865–1937) to be the first to 
study them in a systemic manner, developing a mathematical ‘equipotential theory’ to explain 
phyllotaxis.285 However, of course, nothing new can ever by created from mechanical processes. So, during 
the twentieth century, scientists have been seeking alternative explanations for those phenomena that defy 
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the second law of thermodynamics in physics. I look at some of these after I have outlined the 
mathematics, as I understand it at the present time. 

The mathematical foundations of the study of phyllotaxis were laid down in the 1830s before the 
printing of Leonardo Fibonacci’s Liber Abbaci in 1867 and Lucas’s paper of 1878, when he attributed the 
Fibonacci sequence, much seen in phyllotaxis, to Fibonacci. Karl Friedrich Schimper (1803–1867),286 
Alexander Braun (1805–1877),287 and Louis Bravais (1801–1843) and Auguste Bravais (1811–1863), a botanist 
and crystallographer, respectively,288 wrote the seminal papers. 

Most significantly, the Bravais brothers realized that the Divine Proportion plays 
a central role in phyllotaxis. To see this, rather than looking at the way the Golden 
Section divides the segment of a line, we can apply it to the circumference of a 
circle, forming the Golden Angle, as the angle subtended by the smaller arc of 
length b, where:  

𝑎 + 𝑏
𝑎 =

𝑎
𝑏 = 𝜑 

This means that the fraction f of the circumference subtended by the golden angle is 

𝑓 =
𝑏

𝑎 + 𝑏 =
1

1 + 𝜑 =
1
𝜑A ≈ 0.381966 

So the Golden Angle, which Schimper called the ‘Ideal Angle’, which I’ll denote with gamma (𝛾), as it 
doesn’t seem to have a standard symbol, is either, as calculated by the Bravais brothers:289 

𝛾 =
360
𝜑2

= 180(3 − Û5) = 137.507764° = 137°	30′	28.936″ 

or 
𝛾 = A«

¶m
= 𝜋(3 − Û5) = 2.399963 radians 

That is, the Golden Angle is approximately 137½ degrees, known as 
the divergence angle.290 Under the guidance of H. S. M. Coxeter in 1983, 
Robert Dixon, a mathematical artist, provided an excellent explanation 
for the central importance of the Golden Angle in the growth of plants. 
Starting at position 0, he drew a further 21 points on the circumference 
of a circle, each spaced at the Golden Angle from the previous one. As 
you can see, consecutive pairs of Fibonacci numbers get ever closer to the 
starting point, without ever reaching it. Because 𝜑 is the most irrational 
number, as we see in its continued fraction representation in Chapter 3, 
the Golden Angle provides the optimal arrangement, making the most efficient use of the plant’s limited 
space, as leaves and florets successively emerge. 

Nick Seewald, a statistician, similarly summarizes the benefits of this arrangement in his web pages on 
‘The Myth of the Golden Ratio’:  

Assuming that the sun and rain come from above, orthogonal (perpendicular) to the plane of the leaf, the divergence 
angle must be such as to minimize blockage of lower leaves by higher leaves. Therefore, any sort of periodic leaf 
arrangement must be avoided, if possible, as this will result in such blockage. So, the most optimal arrangement is 

obtained if we divide the circle formed by the plant … by an irrational 
number—the more irrational the better.291 

The diagram on the left from Wikipedia provides another 
illustration of the way that leaves or florets are spaced 𝛾 
degrees from each other as a plant grows.292 This is depicted 
in an actual plant as crisscrossing spirals in an Aloe 
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polyphylla.293 
Turning now to plants in the Asteraceae or Compositae family, such as daisies and sunflowers, their 

flower heads or capitula consist of a dense flat cluster of small flowers or florets sequentially placed at the 
golden angle from each other on what Schimper and Braun 
called the ‘genetic spiral’. However, what is more conspicuous is 
a spiral pattern consisting of a pair of families of parastichies, 
from Greek para-‘adjacent’ and stikhos ‘row, rank’, a word that 
Schimper coined.294  

Now, what is fascinating is that the number of sets of 
intersecting spirals, as parastichy pairs, are adjacent Fibonacci 
numbers, an effect that Gerrit van Iterson (1878–1972) noticed 
in 1907, publishing his discoveries in a Ph.D. thesis on 
phyllotaxis.295 As Livio tells us, “Most commonly there are thirty-four spirals going one way and fifty-five 
the other, but sunflowers with ratios of numbers of spirals of 89/55, 144/89, and even … 233/144 have been 
seen.”296 

But which spiral is most appropriate to use as a model for the sunflower? Well, Jean and Dixon, in 
their illustrations of the fundamental principles, used a logarithmic spiral, with a constant plastochrone 
ratio, as the ratio of distances to the apex of the capitulum of two successively numbered primordia. H. E. 
Huntley made a similar assumption in The Divine Proportion, in a chapter titled ‘Spira Mirabilis’.297 
However, in 1979, in a paper titled ‘A Better Way to Construct the Sunflower Head’, Helmut Vogel 
proposed that Fermat’s spiral should be used as the genetic spiral, as the one that optimizes the packing of 
the seeds, very close to the optimal hexagonal packing.298 The n seeds are positioned in polar coordinates 
at these points: 

(𝑐√𝑛; 𝑛𝛾) 
where 𝑐 = √𝛾 and 𝛾 is the Golden Angle. So does Fermat’s spiral or a logarithmic spiral best serve as 

the genetic spiral underlying the flower head of sunflowers? Well, as I have not found any such 
comparison in the literature and as these mathematical models are so fascinating, I spent a couple of 
weeks in the late summer of 2019 exploring the respective benefits of these two perspectives. For, as you 
can see from the above picture of a ‘perfect’ specimen of a Helianthus annuus, the common sunflower,299 
the seeds actually spread out as they move away from the centre, as in the logarithmic spiral, the opposite 
effect of Fermat’s spiral.  

Nevertheless, as it is Vogel’s radial factor of Û𝑘𝛾 that is used in the basic model of the sunflower in 
GeoGebra’s library,300 this is what I first used in exploring these spirals, as p-parastichies, with my limited 
graphical and mathematical abilities. One thing that I have discovered is that the number of these 
intersecting spirals is not dependent on the radial factor for the positions of the seeds. For comparison, I 
drew three figures with these polar coordinates 

((𝑘𝛾)ð; 𝑘𝛾) 
where a = ½, 1, and 2, and k = 0 to 700. The result is these three diagrams: 
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(Û𝑛𝛾; 𝑛𝛾) (𝑛𝛾; 𝑛𝛾) ((𝑛𝛾)A; 𝑛𝛾) 

In the first two arrangements, the second of which places the seeds in an Archimedes’ spiral, the ratio 
of the clockwise and anticlockwise spirals is 55/34. However, in the power series on the right, the ratio is 
34/21, for some reason. 

On the other hand, the packing of the seeds is incredibly sensitive to the angle in these polar 
coordinates: (√𝑘𝛼; 𝑘𝛼). The next diagrams show three models, with 𝛼 converted to degrees in the table, 
also illustrated in Przemyslaw Prusinkiewicz and Aristid Lindenmayer’s The Algorithmic Beauty of Plants 
and Jean’s Phyllotaxis.301 

 

   
𝛼 = 137.3° 𝛼 = 137.5078° 𝛼 = 137.6° 

Inspired by a Mathologer video that Burkard Polster published on his YouTube channel in 2016,302 I 
then investigated the intersecting spirals in the mathematical model of the sunflower, as a whole, a 
perspective I haven’t seen anywhere else. For apart from its potential to map the growth of a sunflower, I 
find the way that all these spirals relate to each other quite amazing. 

As I have discovered, if the seeds are sequentially numbered s, starting with zero, the kth parastichy in 
the Pn family passes through these points: 

𝑠 ≡ 𝑘	(mod	𝑃") 
where Pn = Fn+2. For instance, when n = 2, P2 = 2, and two spirals pass through the even- and odd- 

numbered points, not unlike the two spirals in the Whirlpool Galaxy. As the diagram on page 258 
indicates, the larger the value of Pn, the closer the points numbered with the same modulus move 
together, enabling the spirals to be seen, even when not explicitly drawn. There was just one snag if I 
were to draw a diagram to display all these interlocking spirals. None of the books and papers I consulted 
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mentioned the general polar equation for these spirals, most significantly the angle between each 
consecutive point. 

In the end, I found the answer to this puzzle on a website with domain name mathcurve.com, with the 
rubric Encyclopédie des formes remarquables: courbes, surfaces, fractals, polyèdres, set up by pupils at Lycée 
Fénelon in Paris in 1993, under the guidance of Robert Ferréo, presumably their teacher.303 They have 
used a logarithmic spiral as the genetic one, with the s points given by these coordinates304 

𝑀� = (𝑐�; 𝑠𝛾) 
located on the genetic spiral: 

𝑟 = 𝑐å ²³  
The kth logarithmic spiral for the Pn family of parastichies then has this general polar equation:  

𝑟 = 𝑐ceøù
åEc²

øù²EAúù« 
where 0 ≤ k < Pn and 𝑞" is the integer closest to 

𝑃"𝛾
2𝜋 =

𝑃"
𝜑A 

which is Fn-2. The angle 𝛾" between two consecutive points of a parastichy is: 
𝛾" = 𝑃"𝛾 − 2𝑞"𝜋 

For P1, the formula reduces to the simple genetic one above. And when k = 0, we have: 

𝑟 = 𝑏
å∙øù
²ù  

This table gives the angles for the first few families, with the minimum number of points Rn in each 
spiral that are passed through to exceed just one rotation of 360° or 2π radians. 

n 1 2 3 4 5 6 7 8 9 10 

𝑃"	 1 2 3 5 8 13 21 34 55 89 

𝑞" 0 1 1 2 3 5 8 13 21 34 

𝛾" 137.5° -85.0° 52.5° -32.5° 20.1° -12.4° 7.7° -4.7° 2.9° -1.8° 

Rn 3 5 7 12 18 30 47 77 123 200 

The corresponding general formula for parastichies based on Fermat’s spiral is: 

𝑟 = Ü𝛾(𝑘 +
𝑃"(𝜃 − 𝑘𝛾)

𝛾"
) 

The diagram on the left below shows the genetic spiral, as the 1-parastichy, passing through all 701 
points sequentially, with the details visible electronically by zooming in the diagram in pdf file. That on 
the right shows the nine families of Pn-parastichies after the first. 
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As all families of spirals pass through all points, to keep this diagram as simple as possible, I’ve only 

shown one spiral intersecting two others, stopping short when the number of spirals meeting at a point 
exceeds three. There are two situations here. For instance, I have terminated the set of ‘circular’ green 
spirals passing through the intersections of the red and blue ones where the ‘radial’ spirals coloured 
sunglow begin. This table shows the relationships of all sets of spirals in the diagram: 

Colour # Spirals Radial aspect Circular aspect 
Sunglow 89 Red & blue  
Red 55 Blue & green  
Blue 34 Green & orange Sunglow & Red  
Green 21 Orange & magenta Red & blue 
Orange 13 Magenta & cyan Blue & green 
Magenta 8 Cyan & lime Green & orange 
Cyan 5 Lime & pink Orange & magenta 
Lime 3  Magenta & cyan 
Pink 2  Cyan & lime 

These two diagrams show the corresponding models when the genetic spiral is logarithmic: 
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As there are 701 points in the diagram, from r = 1, to get them all in, I have used a very small value for 
c = 1.005, giving a growth rate of: 

1.005$ ²³ = 1.005d.F$NN¦ = 1.00208 
As an exponential function, the genetic spiral is thus: 

𝑟 = 𝑒åóï$.ddAdS = 𝑒0.002078å = 𝑒å ëìö1.5687 
In degrees, the radial tangential angle is 89.88°, very nearly circular, a very far remove from that of the 

Golden Spiral. 
So, which model best corresponds to the florets or seeds in the sunflower? The logarithmic spiral best 

maps the outer parastichies, which are most evident. However, it is hopelessly inadequate to map the 
inner florets in the flowerhead. Archimedes’ spiral, lying between the two, or a power spiral, might be a 
better balance between inner and outer. Indeed, Jean points out that several polar equations could serve as 
the generative spiral, with only the logarithmic one having a plastochrone ratio constant.305 Furthermore, 
there is far more variety in phyllotactic effects than in this comparatively simple model, as Coxeter 
pointed out in his chapter on ‘The Golden Section and Phyllotaxis’ in Introduction to Geometry. As he said, 
“Thus we must face the fact that phyllotaxis is really not a universal law but only a fascinating prevalent 
tendency.”306  

To reflect the complexity of actual plants, Jean has developed a much more elaborate mathematical 
model, based on what he calls the Bravais-Bravais theorem, which defines different divergent angles, 
derived from the Golden Angle, including phyllotactic effects that appear cylindrically as lattices, such as 
those in pineapples.307 However, I have taken the mathematics as far as I can for the moment. If this book 
were ever published with the assistance of specialist mathematicians, this exposition could, no doubt, be 
much improved.  

Causal implications 
In the meantime, after this brief overview of the mathematical structure that most closely matches the 
growth of a sunflower, what is causing the sunflower to evolve as it does? Well, this question is not unlike 
the one that Kepler faced in the first decade of the 1600s, as he strove to make sense of Tycho’s 
measurements of the orbits of the planets around the Sun. He was doing so within a cultural environment 
that held to Aristotle’s separation of physics and astronomy, as being exclusively concerned with causality 
and mathematics, respectively. To heal this split, he confidently placed God in the centre of the Sun, 
obsoleting the epicycles of Ptolemy and Copernicus’s geocentric and heliocentric models of the solar 
system, coming close to the inverse square law that Newton later discovered in Principia with his concept 
of gravitation. 

Similarly, to explain what causes the sunflower to grow in the way that it does, I place God at its 
centre. I do so, not by studying phyllotaxis, per se, but by looking within with Self-reflective Intelligence, 
wondering what is causing my creativity and that of all other humans. For what is causing my own 
creativity in my psyche is no different from that guiding the growth of any other structure in the 
Universe, emanating from and through the Cosmic Psyche. What we call ‘man-made’ designs and forms 
are just a part of nature, as Pierre Teilhard could see. Indeed, Jean points out that similarities with 
phyllotactic patterns are also found in art, giving the example of a mosaic in the Museo Nazionale 
Romano,308 similar to this one I found on the Web, which seems to be a floor tile based on a mosaic in 
the Getty Museum.309 In turn, this pattern is very similar to the centre of the symbol I have been using 
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since the 1990s for the Sun of Consciousness,310 as the Coherent Light emerging from a black hole, 
enabling us to view the Cosmos holographically. 

  
As I describe on page 24 in Chapter 1 on ‘Business Modelling’, I have come to this realization because 

synergistic data, arising from the Datum of the Universe, is causal and hence energetic. Indeed, as data is 
ubiquitous, unlike the Divine Proportion, there is no other possible source of causality than data patterns, 
viewing the Cosmos as an infinitely dimensional network of hierarchical relationships emerging directly 
from the Source, as the Divine Origin of the Universe. 

To explain this, I use Heraclitus’ mystical meaning of Logos, as the Immanent Divine Intelligence 
governing the Cosmos. Just as the Logos has shown me how to intelligently integrate all knowledge into 
a coherent whole—with Integral Relational Logic providing the Cosmic Context, Gnostic Foundation, 
and coordinating framework—the Logos has the intelligence to ‘know’ how to optimize the packing of 
seeds of sunflowers in spiral arrangements. For, as mathematics is inaccessible to our physical senses, its 
influence must reside in the Cosmic Psyche, the 99% of the Universe that does not consist of matter. Such 
notions lie at the very heart of unifying mysticism and mathematics in order to reveal Love, Peace, 
Wholeness, and the Truth, the central theme of this book. 

Yet, like Kepler, I live in a schizoid culture, one that separates science and spirituality, denying the 
existence of Life, the Logos, and the brilliant Light of Consciousness that enables our innate Intelligence 
to understand what is happening to our species at the present time. Faced with the dogma of the second 
law of thermodynamics, the best that conventional scientists can do to explain growth processes is 
through what called Humberto Maturana and Francisco Varela called self-organizing, -producing, or  
-creating structures in 1972. In technical terms, they called this process autopoiesis, from the Greek poien 
‘to make, do, produce, create’, which is also the root of poetry. To them, autopoietic machines are 
homeostatic machines, with one peculiarity: 

An autopoietic machine is a machine organized (defined as a unity) as a network of processes of production 
(transformation and destruction) of components which: (i) through their interactions and transformations continuously 
regenerate and realize the network of processes (relations) that produced them; and (ii) constitute it (the machine) as a 
concrete unity in space in which they (the components) exist by specifying the topological domain of its realization as 
such a network.311 
The physicists Stéphane Douady and Yves Couder used this self-organizing model in 1991 to explain 

how parastichies can be produced in the laboratory, “due to the system’s trend to avoid rational (periodic) 
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organization, thus leading to a convergence towards the golden mean”.312 Drops of a magnetic fluid were 
dropped into a dish full of silicone oil in a magnetic field stronger near the dish’s edge than at the centre, 
as they demonstrate in a YouTube video.313 As Livio succinctly explains, “Physical systems usually settle 
into states that minimize energy. The suggestion is therefore that phyllotaxis represents a state of minimal 
energy for a system of mutually repelling buds.”314 

However, it is uncertain whether florets actually emerge one by one from 
the centre of the capitulum fully formed, pushing the ones that have already 
emerged out to the perimeter, which is sometimes suggested in the literature. 
Indeed, here is a scanning electron micrograph of a very young capitulum of 
Helianthus annuus, about 2.5 mm in diameter, “showing the process of floret 
initiation proceeding toward the centre on the generative front with a 
remarkable degree of symmetry”. 315  For me, this picture shows that the 
sunflower emerges as a whole, presumably through cell differentiation, not 
unlike the development of the human embryo. This is essentially how this book is evolving. I visualized it 
as a whole in the summer of 2018, without the details, which are emerging directly from the Divine 
Origin of the Universe as I write.  

So, as Jean points out, the root meaning of phyllotaxis is rather restrictive, applying far beyond so-
called living systems, beyond just the arrangement of leaves in botany, inexplicable within the framework 
of reductionist science, dividing natural phenomena into separate parts.316 So, while seeking a mechanistic 
explanation for phyllotactic effects, rooted in the supposed physicochemical basis of the universe, Jean has 
been searching for an alternative explanatory approach. The one he favours is the autoevolutionism of 
António Lima-de-Faria, emeritus professor of cytogenetics at Lund University, who wrote a book titled 
Evolution without Selection: Form and Function by Autoevolution in 1988, presumably after retiring. This 
polemical book is popular in Russia, but almost unknown in the USA, questioning, as it does, a 
fundamental tenet of Neo-Darwinism.317 

Lima-de-Faria has the distinction of having an entry in RationalWiki, which has the purpose to fight 
what it regards as ‘pseudoscience’. He proposed that evolution is ‘ordered’ by physicochemical processes—
not by natural selection—as a form of orthogenesis,318 “the hypothesis that evolution has an innate 
tendency to evolve in a unilinear fashion due to some internal or external force or mechanism.”319 So 
scientifically establishing Life as the ultimate cause of creativity, confirming what many sense within 
them, still has a mountain to climb. 

It is here that we need to recognize that scientific research is as much a social activity as an objective, 
rational process, as Thomas S. Kuhn pointed out in The Structure of Scientific Revolutions in 1962. Then, in 
1970, Imre Lakatos introduced the notion of an unchangeable ‘hard core’ that scientific research 
programmes should adhere to. 320  As billionaires and large companies fund much of technological 
research,321 anyone questioning this hard core is likely to be ostracized, even losing their positions in 
academia, making materialistic, mechanistic science today even more dogmatic than Medieval religious 
beliefs. 

 Yes, many individuals and institutions are today questioning some of the core beliefs of science in 
order to explain everyday effects that are anomalous within the prevailing materialistic, mechanistic 
paradigm, with some even seeking to unify science and spirituality. Yet, almost no one is ready to awaken 
to Total Revolution, recognizing that holding on one-sidedly to the status quo at these times of 
unprecedented rates of change is insane, as Vimala Thakar pointed out in 1984 in Spirituality and Social 
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Action: A Holistic Approach. In particular, we cannot understand what is happening to us all as a species by 
following a traditional work ethic, trapped, as cogs, within the economic machine, believing that money 
provides a sense of security in life. 

As the banks will disappear when Homo sapiens becomes extinct in the near future, all I can do under 
these circumstances is continue to live in solitary Wholeness, as an outsider to society, paradoxically 
recognizing that none of us is ever separate from any other being for an instant, exploring the 
psychogenesis of mathematics, the evolutionary growth process that underlies morphogenesis and all 
other genetic processes. For to model the growth of form in all its myriad manifestations, we can do no 
better than generalize the modelling methods of information systems architects in business, which 
underlie the Internet, as I describe in Chapters 1 and 2 of this book. 

What is of particular interest in this regard is that Alan Turing’s attempts to study morphogenesis in 
1952 with simultaneous first- and second-order differential equations has led to an evolutionary dead end, 

as Aristid Lindenmayer (1925–1989) pointed out in his seminal 
papers in 1968 of what are today known as L-systems.322 Similarly, 
topological catastrophe theory, which René Thom (1923–2002) 
introduced in 1975 in Structural Stability and Morphogenesis: An 
Outline of a General Theory of Models, is too complex to adequately 
model bifurcations in dynamical systems, as I explained in 2016 in 
my book Through Evolution’s Accumulation Point: Towards Its 
Glorious Culmination. To develop almost natural looking 

representations of plants, in particular, as Lindenmayer’s collaborator Przemyslaw Prusinkiewicz does 
with computer graphics, like the above roses,323 requires finite mathematics, much simpler, generating 
forms and structures of limitless complexity. 

But we need to remember that L-systems, short for Lindenmayer systems, are a language, as symbols 
representing the structure of concepts in the mind, whose emergence from our Divine Source we need to 
cognitively experience to understand morphogenesis. So, as fascinating as this language is, to fully 
understand causality in humans, nature, and the Universe, it is vitally important to map the mathematical 
structures in the Cosmic Psyche, before they are expressed in language. 

Anthropomorphic and aesthetic considerations 
Having looked briefly at the confusion around which mathematical models work best to describe 
spiralling effects in nature and the impossibility of materialistic, mechanistic science to explain the 
causality of phyllotaxis, we now need to turn to what Martin Gardner (1914–2010) called the ‘Cult of the 
Golden Ratio’ in his mockery of those associating φ aesthetically with art and nature, even attributing the 
Divine Proportion to quantitative relationships in the ‘ideal’ male human body.  

Gardner said that erroneously finding φ ubiquitously in nature and art has all the earmarks of pseudo-
math, as an extension of pseudoscience,324 a term that Wikipedia editors often use to debunk attempts to 
explain any anomalous phenomena that don’t fit into the materialistic and mechanistic paradigm. We live 
in a culture dominated by a science that denies the existence of Spirit and Life, which make life worth 
living, explaining who we humans are—in contrast to conforming machines—and why we behave as we 
do. 

The claim is that scientists are being rational by dismissing Life emanating from the Datum of 
Universe from science, for the Absolute is regarded as being beyond reason. Yet, as I describe on pages 72 
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and 73 in the section titled ‘Transcending the categories’ in the chapter on ‘Integral Relational Logic’, in 
October 1983 I was able to use David Bohm’s simple method of bringing order to quantum physics to 
form the concept of the Absolute in exactly the same way as I form the concept of any being in the 
relativistic world of form. Then, following 25 years of profound spiritual practice, God became a sound 
scientific concept in the Altai Mountains in Siberia, the original home of the shamans, and I became 
completely free of the limiting delusions that govern Western civilization. 

So, since then, I have been living in a quite different world from most of those around me, writing a 
dozen books explaining what it truly means to be an intelligent human being in comparison to machines 
with so-called artificial intelligence in the context of evolution, as a whole, and the psychodynamics of 
society. It is with such Self-awareness that I am writing this book on Unifying Mysticism and Mathematics 
in order to reveal Love, Peace, Wholeness, and the Truth. 

 
Regarding the anthropomorphic and aesthetic implications of the golden ratio, we first look at the root 

of ratio, rational, and reason, for by studying what Bohm called the ‘archaeology of language’ we learn 
much about the evolutionary influences on our lives. These words all derive from Latin ratiō ‘calculation, 
reckoning’, from ratus, past participle of rērī ‘to reckon, think; consider, suppose, judge’, from PIE base 
*ar- ‘to fit together’, also root of harmony and order. The word reason entered English before 1200 from 
Old French to mean ‘explanation, ability to think’. 

Associating reckoning or counting with thinking shows to what extent Western science has become 
imprisoned in the tyranny of number, which George Boole began to liberate us from in the mid 1800s, as 
we see in the next chapter on ‘Universal algebra’. For mathematical logic was to lead information systems 
architects in business to treat qualitative and quantitative relationships in exactly the same manner. Yet, 
old habits die hard. 

For instance, in business, it is said, “If you cannot measure, you cannot manage,” probably inspired by 
Lord Kelvin’s view of physical science, “To measure is to know,” and “When you can measure what you 
are speaking about, and express it in numbers, you know something about it; but when you cannot 
measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory 
kind.”325 

In contrast, Arthur Koestler said in The Ghost in the Machine that scientists’ obsession with quantitative 
measurement is the fourth of four pillars of unwisdom in science and economics, which I have redefined 
and expanded, as described on page xiv in the Prologue. And there is no greater absurdity than that of 
money, as a quantitative measure of what we value in life. Most significantly, because we have become 
separated from the Immortal Ground of Being that we all share, we have reified money, as a supposed 
unit of measure, turning a unit, like metres and grams, into a commodity, which can be bought and sold 
in the financial markets. 

Yet, as Bohm pointed out in a profound passage on how to heal the fragmentated mind in 
Wholeness,326 this is not what the ancient Greeks understood by measure. The word measure derives from 
Greek metron ‘measure, rule, standard’, also the root of metrios ‘moderate, within measure’ and metriotes 
‘moderation, modesty’, from PIE base *med- ‘to take appropriate measures’, also root of medical, remedy, 
moderate, and module. 

So, to the ancient Greeks, what scientists call measurement today was a secondary activity, as the 
“outer display or appearance of a deeper ‘inner measure’, which played an essential role in everything”. As 
Bohm pointed out,  
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When something went beyond its proper measure, this meant not merely that it was not conforming to some external 
standard of what was right but, much more, that it was inwardly out of harmony, so that it was bound to lose its 
integrity and break up into fragments. … So, physically, socially, and mentally, awareness of the inner measure of things 
was seen as the essential key to a healthy, happy, and harmonious life.327 
This inner sense of measure is thus key to our reasoning, to keeping the totality of everything in its 

proper proportion. For the Greek word for proportion is analogia, from ana- ‘upon, according to’ and logos 
‘ratio, reckoning’, the root of analogy, of course. In English, proportion derives from Old French proporcion 
‘measure, proportion’, from Latin proportionem (nominative proportio) ‘comparative relation, analogy’, 
from the phrase pro portione ‘according to the relation’ (of parts to each other), from pro ‘for’ and ablative 
of *partiō ‘division’, related to pars ‘a part, piece, portion, share’, from partire ‘to share out, distribute, 
divide’. 

Euclid’s Elements well illustrates the distinction between mensuration and enumeration, at the core of 
combinatorics, a central theme of this chapter. The word measure is frequently used, but there is no 
counting in units, such as metres, seconds, grams, or dollars. Euclid is more concerned with relationships 
and proportions in geometrical figures, adding some theorems about primes, coprimes, and perfect 
numbers, most famously proving by the mathematical technique of induction that there are an infinite 
number of primes,328 as we see in the previous chapter. So to measure √2, which cannot be expressed 
rationally, as the ratio of integers, the Greeks “used a length equal to the hypotenuse of a right triangle 
whose sides were one unit in length.”329  

In contrast, in the East, as Bohm points out, what is immeasurable (that which cannot be named, 
described, or understood through any form of reason) is regarded as the primary reality. For while 
Sanskrit matra ‘measure’ has the same PIE base, this is also the root of māyā, usually translated as 
‘illusion’. To cocreate a harmonious and healthy society, healing the split between East and West and 
ending the war between science and religion, we thus need to unify the immeasurable and measurable 
within the deepest recesses of the Cosmic Psyche, as this book on Unifying Mysticism and Mathematics is 
endeavouring to demonstrate. 

Not that this is easy, as Bohm points out: “to develop new insight into fragmentation and wholeness 
requires a creative work even more difficult than that needed to make fundamental new discoveries in 
science, or great and original works of art”. As he says, it is not enough to imitate Einstein’s ideas or apply 
them in new ways. Rather, one who learns from Einstein does something original, assimilating what is 
valid in Einstein’s work and yet goes beyond this work in qualitatively new ways. And that requires us “to 
learn afresh, to observe, and to discover for ourselves the meaning of wholeness.”330 For, as Bohm said in 
1985, if we do not question the assumptions and beliefs of the cultures we live in then humanity is not a 
viable species. 

  
In the context of this short overview of the etymology of ratio, proportion, and measure, we can now 

look briefly at how we might resolve the conflict between sceptical scientists and those seeking to 
transcend the materialism and mechanism of science through their experience and spiritual insights. Like 
all conflicts between people, this disagreement arises from a lack of understanding of the essential nature 
of Wholeness, encapsulated in the fundamental law of the Universe, which I define on page 73: Wholeness 
is the union of all opposites. On the next page in that chapter, I show how the Principle of Unity or Hidden 
Harmony can be expressed in mathematical notation as the Cosmic Equation, the simple, elegant 
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equation that can explain everything, which Einstein and Hawking sought in their futile endeavours to 
solve the ultimate problem of human learning within physics. 

In particular, we can trace the widespread confusion about the role of the Divine Proportion in nature 
and art back to 1855, when the German psychologist Adolf Zeising (1810–1876) published a book titled: A 
New Theory of the proportions of the human body, developed from a basic morphological law which stayed 
hitherto unknown, and which permeates the whole nature and art, accompanied by a complete summary of the 
prevailing systems.331 Then, in the posthumously published Der Goldner Schnitt in 1884, he claimed that the 
dimensions of the Parthenon in Athens, for which Phidias provided the sculptures, display the aspect 
ratio of the Golden Rectangle.332 

Thus, the myth of the Golden Ratio was born, as people increasingly wanted to see the Divine 
Proportion in art and nature where it does not exist. Nick Seewald provides a well-balanced overview of 
the myth of phi on his website, written in 2010, when he was an undergraduate.333 He began by quoting 
from Mario Livio’s excellent book The Golden Ratio, which says, “It is probably fair to say that the Golden 
Ratio has inspired thinkers of all disciplines like no other number in the history of mathematics,” a notion 
encapsulated in the two subtitles of this book: The Story of Phi, the Extra ordinary Number of Nature, Art 
and Beauty or The Story of Phi, the World’s Most Astonishing Number.  

Yet, the proportions of the Parthenon are not in the 
Golden Ratio, as this image from an Internet post in 
2005 titled ‘Laputan Logic – The Cult of the Golden 
Ratio’ illustrates. 334  When people see the Divine 
Proportion in the Parthenon, this depends on the 
bounds of what they measure. I have also seen that 
some adjust the aspect ratio of the source to prove 
their point, corrupting scientific inquiry. 

We also should not forget that the ancient Greeks 
only understood the Golden Ratio in terms of Euclid’s 
definition on page 202. As Julia Calderone reminds us in an article titled ‘The golden ratio and Fibonacci 
numbers don’t prove beauty’ in Business Insider, “A given set of numbers is said to be in a golden ratio if 
the following occurs:”335 

𝑎
𝑏 =

𝑎 + 𝑏
𝑎 					𝑎 > 𝑏 

The Golden Ratio would thus seem to be a rational number if integers a and b could be found to 
satisfy this equation. However, as we see on page 203, Kepler discovered that there are no such integers, 
other than consecutive terms in the Fibonacci sequence, whose ratio comes ever closer to 1.618034 as the 
terms get larger and larger. So, it is most unlikely that the Greeks could have consciously used any 
irrational number in their architecture. Indeed, as we see on page 274, the golden mean was not one of 
the ten means that the Pythagoreans studied in their theory of proportion and means, particularly related 
to harmony in music, a subject that also Kepler addressed in his wonderful book The Harmony of the 
World, as we see on page 102 in the previous chapter. 

This preference for rational numbers prevailed even into the 1600s, when irrational numbers, which 
Kepler called ineffable, would be “avoided as much as possible, and certainly so when the architect was 
laying out a building’s principal proportions”, the art historian George L. Hersey (1927–2007) tells us in 
Architecture and Geometry in the Age of the Baroque. As the Modenese architect Guarino Guarini (1624–
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1683) wrote in the posthumously published Architettura civile, effable proportions, as easy-to-measure 
shapes, were deemed to be superior to ineffable ones.336 Guarini was much influenced by the ancients, 
developing a ‘Universal Mathematics’ as an augmentation of Euclid, “transcending all material concern to 
be analogous to a divina scientia”, and accepting the traditions of Vitruvius in architecture.337 

In De architectura (The Ten Books on Architecture) from around 15 BCE, Marcus Vitruvius Pollio (80–70 
BCE–20–10 BCE) showed that the proportions of the Greek temples, including the Parthenon, were 
analogous to the proportions of the human body. As he said in Book III, Chapter I ‘On Symmetry: In 
Temples and in the Human Body’, 

Proportion is a correspondence among the measures of the members of an entire work, and of the whole to a certain 
part selected as standard. From this result the principles of symmetry. … Without symmetry and proportion there can 
be no principles in the design of any temple; that is, if there is no precise relation between its members, as in the case of 
those of a well-shaped man.338 
To Vetruvio, a man is four cubits or six feet, as six and four palms, respectively, which, in turn, are four 

fingers. He also gave other proportions, saying, for instance, “from the chin to the top of the forehead and 
the lowest roots of the hair is a tenth part of the whole height.” 
Continuing, he said, “The other members, too, have their own symmetrical 
proportions, and it was by employing them that the famous painters and 
sculptors of antiquity attained to great and endless renown.” 

Then, around 1490, Leonardo da Vinci, similarly inspired by the 
proportions of the human body in his studies of anatomy, architecture, and 
engineering, drew this famous picture, known as Vitruvian Man.339 The 
text above and below the drawing in mirror writing is very much as 
Vetruvio wrote it.340 As the art historian Ludwig Heinrich Heydenreich 
(1903–1978) tells us, Leonardo envisaged “Vitruvian Man as a cosmografia del 
minor mondo (cosmography of the microcosm), believing the workings of 

the human body to be an analogy, in microcosm, for the workings of the universe”. For, 
In an era that often compared the process of divine creation to the activity of an artist, Leonardo reversed the analogy, 
using art as his own means to approximate the mysteries of creation, asserting that, through the science of painting, “the 
mind of the painter is transformed into a copy of the divine mind, since it operates freely in creating many kinds of 
animals, plants, fruits, landscapes, countrysides, ruins, and awe-inspiring places.341 
There is no mention of the Golden Ratio here, despite the fact that Leonardo 

illustrated Pacioli’s De Divina Proportione over fifteen years later, as mentioned on page 
202. But this has not stopped people saying that Leonardo’s famous painting of the 
Mona Lisa is based on the Golden Rectangle, which is clearly false, as we see in this 
picture, also from Laputan Logic.  

After Zeising, the next person to perpetuate the myth of the golden ratio was  
Gustav Theodor Fechner (1801–1887), the founder of experimental aesthetics in 
psychology, who set out in the 1860s to prove Zeising’s ‘pet theory’, publishing the results of his 

experiments in 1876 in Vorschule der Aesthetik (Introduction to 
Aesthetics).342 For instance, he conducted an experiment in which 
numerous observers were asked to select which of a number of 
rectangles, like this example, were the most aesthetically pleasing to 
them. Livio tell us that “76 percent of all choices centred on the 
three rectangles having the ratios 1.75, 1.62, and 1.50, with the peak 

at the Golden Rectangle (1.62).” I am not sure what this proves, as beauty is not to be found within any 
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one form in isolation. Nevertheless, George Markowsky repeated the experiment in 1992, showing in a 
much-quoted paper titled ‘Misconceptions about the Golden Ratio’ that Zeising and Fechner’s claims 
were flawed, dispelling many other misconceptions relating to the Golden Ratio.343 

  
One architect who explicitly attempted to use the Fibonacci sequence to find a universal solution to 

the problems of human proportion was Charles-Édouard Jeanneret (1887–1965), known as Le Corbusier, 
after his maternal grandfather. Specifically, he sought a system of measurement that would be naturally 
based on the proportions of the human body, reconciling the metric system with feet and inches, the 
system invented by the Anglo-Saxons. Le Corbusier favoured anthropic units, for a metre “is nothing but 
a length of metal at the bottom of a well at the Pavillion du Breteuil near Paris”,344 and while inch derives 
from Latin uncia ‘a twelfth’, an inch is usually regarded as the width of a thumb. 

He called this anthropocentric system ‘Le Modulor’, from 
French moduler ‘to modulate’, a measure that creates modules 
and modulates.345 The modulor is thus “a measuring tool based 
on the human body and mathematics”, depicted in this 
diagram, which Le Corbusier called the ‘trade mark’. 346  It 
displays a man with upraised arm divided into three intervals, 
which are approximately in the ratio of the Golden section. 

Le Corbusier initially set the height of the ‘ideal’ man at 1.75 
metres, but realized that this was too French. On the other 
hand, “in English detective stories, the good-looking men, 
such as policemen, are always six feet tall.”347 Apparently “the 
female body was belatedly considered and rejected as a source 
of proportional harmony.”348 

Rounding six feet to the nearest millimetre, the modulor man is 1.829 metres tall. Dividing this by φ 
gives the height of the navel as 1130 mm, which Le Corbusier doubled to give the height of the tips of the 
fingers in the upraised arm as 2260. Thus, the ratios of the three principal sections of the modulor man 
are 1130/698 = 1.6157 and 699/432 = 1.6189, apparently using these values rather than the actual differences 
of 699 and 431, for they give ratios closer to 1.6180. 

To develop his measuring tool, Le Corbusier then used 1829 and 2260 as the base for two Fibonacci 
sequences, called the red and the blue, dividing and multiplying them by φ and rounding to the nearest 
millimetre.349 Thus, in most cases, each term is the sum of the two previous ones, the simplest of all 
second-order recurrence equations. The red and blue sequences wind around each other like a double 
helix, which “appears beside the sculptured image of the modulor man in many Le Corbusier 
buildings”.350 

Now, as each interval in a Fibonacci sequence, as the previous term, is approximately equal to the sum 
of all previous terms, Le Corbusier saw his measuring tool as “a flawless fabric formed of stitches of every 
dimension, from the smallest to the very largest, a texture of perfect homogeneity”. The fabric itself was 
formed by plotting the red and blue sequences against each other, forming a lattice of rectangles that 
could be used in any design or construction work, represented at the right of the ‘trade mark’.351 

There are two central weaknesses of Le Corbusier’s measuring tool, ingenious as it is. First, it is “an 
entirely analytical method of proportion”, as P. H. Scholfield pointed out in 1958.352 Secondly, as a 
consequence, it is not based on one’s inner sense of proportion, but based arbitrarily on the external 
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proportions of the human body, arranged to fit into the Divine Proportion, even though there is no 
reason why they should do so. 

  
Then, in the second half of the twentieth century people’s obsessive fascination with the Divine 

Proportion became so out of proportion that Stephen Strogatz was moved to write an opinion piece on 
‘Proportion Control’ in the New York Times in 2012.353 However, it is not easy to separate the myth from 
the maths, freeing the Golden Section from much hype, as he urged us to do. Most significantly, as the 
myths contain much ancient wisdom, lost to conventional science, it is important that we do not throw 
the spiritual baby out with the murky bath water. 

For the Golden Ratio is actually quite ordinary, arising as a limiting ratio in Lucas sequences, along 
with an infinite number of others, as Clement Falbo pointed out in 2005 in ‘The Golden Ratio: A 
Contrary Viewpoint’.354 So, it doesn’t appear to be as special as π and e, for instance. However, φ is special 
in one respect. The Golden Ratio has the distinction of being the most irrational number, as we see in its 
continued fraction representation in Chapter 3, a property that gives it central importance in the 
morphogenesis of plants, as we see on page 258.  

To look for a number that is ubiquitous in nature, the only other one I would suggest is δ, as the little-
known bifurcation velocity constant, which Mitchell J. Feigenbaum says lies at the heart of what he calls 
‘universality theory’.355 For the reciprocal of this number—as the constant ratio of a geometric series, 
which we look at on page 279—helps us to model the entire history of evolution since the most recent big 
bang, enabling us to understand why the world is degenerating into chaos at the present time, as I explain 
in my 2016 book Through Evolution’s Accumulation Point: Towards Its Glorious Culmination. 

  

Infinite series 
While Euclid and Archimedes studied the geometric series a little, it was not until the fourteenth century 
that mathematicians really became fascinated by infinite series. However, they could not get very far 
because, while they had imagination and precision of thought, they did not have the necessary algebraic 
and geometric facility.356 It was not until the 1600s and 1700s, at the birth of modern mathematics, that 
the study of such series really took off, today playing a central role in analysis. 

Eric Weisstein, on his MathWorld Wolfram website, defines series as “an infinite ordered set of terms 
combined together by the addition operator,” saying, “the term ‘infinite series’ is sometimes used to 
emphasize the fact that series contain an infinite number of terms.”357 In mathematical terms, an infinite 
series is defined as the limit of the partial sums of the sequence of terms, which could be integers or real 
or complex numbers: 
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As ai could be positive or negative, unlike the terms in the finite sequences of natural numbers we 
looked in the first section, to determine whether a series converges regardless of sign, mathematicians 
conduct a ratio test358 by calculating: 

𝜌 = lim
"→�

ü
𝑎"e$
𝑎"

ü 

If ρ < or > 1, the series converges absolutely or diverges to infinity. If ρ = 1, it is not possible to use the 
ratio test to determine convergence or divergence. In some such cases, the series can either converge or 
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diverge, defining the latter as that which does not converge, even those series that converge to oscillating 
values, which I would consider in a different category. 

Before we look at the symbolic expressions of infinite series, it is important to remember that they first 
exist in the Cosmic Psyche in nonphysical form. As such, they are universal, becoming manifest in 
mathematical symbolism, as in this book, and in the material world through the action of the creative 
power of Life emanating directly from the Divine Origin of the Universe. As infinite series play a central 
role in mathematical analysis, having some understanding of this branch of mathematics is central to 
understanding how the Universe is designed and hence what is currently causing scientists and 
technologists to drive the pace of evolutionary change at unprecedented exponential rates of acceleration, 
an understanding that arises through unconditioned self-inquiry. 

Infinite sums of reciprocals of finite sequences  
For me, the natural place to start exploring infinite series is with the sums of the reciprocals of numbers 
generated from recurrence equations, such as figurate and Catalan numbers, which we explored in the 
first section of this chapter. In this, I am in good company. Jakob Bernoulli was similarly interested in the 
reciprocals of figurate numbers,359 as we look at later. 

Although such series don’t generally follow a pattern, a Wikipedia page titled ‘List of sums of 
reciprocals’ does give two properties of such series that are significant. Does the series diverge or converge 
and, if the latter, is the limit value rational or irrational, and, if the latter, is that value algebraic or 
transcendental? This subset of infinite series thus has one common feature. If Rk is the kth number in the 
sequence generated from a recurrence equation, then we need to evaluate: 
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So, one approach to evaluating the sums of reciprocals is first to determine if they converge and then 
to seek a closed-form expression for the first N terms, whose limit we can then determine. For instance, 
applying the ratio test, ρ = 1 for the harmonic series and reciprocals of the figurate numbers. But the 
former diverges, while the latter converge. On the other hand, ρ < 1 for the reciprocals of the Fibonacci 
and Catalan numbers, for instance, so these converge absolutely. The difference seems to be because the 
recurrence equations of the arithmetic progressions and figurate numbers are additive, while those of the 
others are multiplicative, like geometric series, which we look at in a moment. 

Let us look at a few examples of this subset of infinite series to illustrate the variability. 

Harmonic series 
The most fundamental of the sums of reciprocals is that of the 
natural numbers, called a harmonic series, from Greek armoniā 
‘union, agreement, concord of sounds, harmony, proportion’, from 
armos ‘joint’, from PIE-base *-ar ‘to fit together’, also root of art, 
order, and ratio. We can see the relationship between the reciprocals 
of the natural numbers and harmonics in music from this diagram, 
which shows the periods of a plucked string, for instance, as the 
inverse of its frequency, as the Pythagoreans discovered. 

In mathematics, the harmonic series is defined as: 
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Just as each term in the sequence of natural numbers is the arithmetic mean of the two numbers either 
side of it, the reciprocal of the harmonic mean in the harmonic series is the arithmetic mean of the 
reciprocals of the two numbers a and b either side of it, as this general formula with two terms shows: 

1
𝐻 =

1
𝑎 +

1
𝑏

2 =
𝑎 + 𝑏
2𝑎𝑏  

giving 

𝐻 =
2𝑎𝑏
𝑎 + 𝑏 

To illustrate, as a and b are themselves reciprocals in the harmonic series, the harmonic mean of ⅓ and 
⅕ is:	

2 ∙ 13 ∙
1
5

1
3 +

1
5
=

2
15
3 + 5
15

=
2
8 =

1
4	

Now as the arithmetic mean A is (a + b)/2, the product of the arithmetic and harmonic means is the 
square of the geometric mean (G), as this formula shows: 

𝐴 ∙ 𝐻 =
𝑎 + 𝑏
2 ∙

2𝑎𝑏
𝑎 + 𝑏 = 𝑎𝑏 = 𝐺A 

Pythagoras studied the arithmetic, geometric, and harmonic means with reference to the theory of 
music and arithmetic, in his general studies of the theory of proportion. The harmonic mean was initially 
called ‘subcontrary’, which the Pythagoreans Archytas and Hippasus later changed to what it is today.360 

Regarding arithmetic series or progressions, in general, their reciprocals can also be regarded as 
harmonic series or progressions, as Euler pointed out.361 For each term is the harmonic mean of the two 
numbers either side of it. Taking the odd numbers as an example, the harmonic mean of ⅓ and 1/7 is:	

2 ∙ 13 ∙
1
7

1
3 +

1
7
=

2
21
3+ 7
21

=
2
10 =

1
5	

 
The partial sums of the harmonic series are defined as harmonic numbers Hn, the first few terms being  

n 1 2 3 4 5 6 7 8 9 10 11 12 

Hn 
1 3

2
 

11
6

 25
12

 137
60

 49
20

 363
140

 761
280

 7129
2520

 7381
2520

 83711
27720

 86021
27720

 

1 1.5 1.83 2.08 2.28 2.45 2.59 2.72 2.83 2.93 3.02 3.1 

The numerators and denominators of the harmonic numbers are given in the OEIS as A001008 and 
A002805, respectively. The harmonic numbers are obviously steadily increasing. But do they ever 
converge on a finite value as the increments get smaller and smaller? This is a question that the eminent 
French philosopher Nicole Oresme (c. 1323–1382) addressed in the middle of the 1300s. He proved that 
the harmonic series converges with a simple proof still taught in schools today.362 From the harmonic 
series, he formed a smaller one in this manner: 
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As each group of 2k terms in parentheses sums to ½ and as there are an infinite number of them, the 
harmonic series must diverge, ‘a barely known masterpiece of medieval mathematics’.363 This was little 
known until centuries later because Oresme’s manuscript was lost.364 In the event, Pietro Mengoli (1626–
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1686), an ‘unappreciated mathematician’,365 and Johann Bernoulli proved the divergence of the harmonic 
series in 1647 and 1687, respectively,366 Bernoulli not knowing that Oresme and Mengoli had done so 
already.367 His brother Jakob published a proof in his 1689 work Tractatus de Seriebus Infinitis (Treatise on 
Infinite Series),368 falsely claiming that his brother was the first to do so.369 He closes with these words:370  

Even as the finite encloses an infinite series 
And in the unlimited limits appear, 
So the soul of immensity dwells in minutia 
And in the narrowest limits no limit in here. 
What joy to discern the minute in infinity! 
The vast to perceive in the small, what divinity! 

It seems from these lyrical words that the Bernoulli brothers and their contemporaries were somewhat 
bemused by the convergence of the harmonic series, as some still are today. In a short essay titled ‘The 
Bernoullis and the Harmonic Series’, William Dunham encapsulated the situation with these words: 
“Seasoned mathematicians tend to forget how surprising this phenomenon appears to the uninitiated 
student—that, by adding ever more negligible terms, we nonetheless reach a sum greater than any 
preassigned quantity.”371 

We can shed some further light on this situation with perhaps the 
most elegant formal proof of the divergence of the harmonic series, 
known as an ‘integral test’. To illustrate, the area of all the rectangles in 
this diagram totals to the sum of the harmonic series, stretching to 
infinity. In comparison, the area under the curve, which is clearly 
smaller, is given by the integral: 
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Now, the rate at which ln 𝑥 grows is given by its derivative, which is 1/x, which gets smaller and 
smaller, but does not reach an infinitesimal value until x itself is infinite, unlike convergent infinite series, 
which we look in a moment. Indeed, in his famous paper on ‘Harmonic Progressions’ from 1734, Euler 
suggested that this fact provides a proof of the divergence of the harmonic series. In the same paper, 
Euler wondered about the total size of the ‘triangular’ pieces of each rectangle above the curve, as the 
finite difference of two expressions tending to infinity. He calculated it as 0.577218, acknowledging it as 
an approximate result, for the last decimal place should be 6. 

This mathematical constant, which seems to appear frequently in the study of infinite series, was 
initially known as Euler’s Constant. Then, in 1790, Lorenzo Mascheroni (1750–1800) calculated it to 32 
decimal places. although only the first 19 places were correct. Nevertheless, as Mascheroni showed a deep 
understanding of Euler’s calculus,372 Euler’s Constant is today called the Euler-Mascheroni Constant, 
denoted by γ, where  

𝛾 = 0.5772156649…. 
This constant, whose decimal expansion is given in OEIS A001620, is so named because it is closely 

related to the digamma and gamma functions,373 as a generalization of factorials, which we’ll look at later. 
What this integral test clearly shows is that the growth rate of the harmonic series, closely related to 

ln 𝑥, is extremely slow, but nevertheless never stopping in finite time. Indeed, the growth rate is so slow 
that the partial sum of the harmonic series does not pass 10 until 12367 terms and in 1968 John W. 
Wrench Jr calculated that it would not pass 100 until the number of terms passed fifteen tredecillion 
(15*1043), which OEIS A082912 gives exactly as  
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15,092,688,622,113,788,323,693,563,264,538,101,449,859,497 
Indeed, this result raises the question whether a series could grow even more slowly than the harmonic 

series. Indeed, there is such a series! In 1737, Euler proved that the sum of the reciprocals of the prime 
numbers is also divergent, at a rate closely related to ln ln 𝑥.374 In 1874, Franz Mertens (1840–1927) then 
calculated the asymptotic form of the harmonic series for the sum of reciprocal primes, corresponding to 
the Euler–Mascheroni constant, today known as Mertens Constant,375 whose value is 0.2614972128… 
(OEIS A077761). Wikipedia calls this mathematical constant the Meissel–Mertens Constant, after Ernst 
Meissel (1826–1895), who made an uncertain contribution in 1866.376 

There is no need to stop there. Divergent growth rates for ln ln ln 𝑥, ln ln ln ln 𝑥, etc. are possible, as can 
be shown with the integral test for convergence, but they must diverge very, very slowly.377 On the other 
hand, a subset of the reciprocals of the primes is so sparse that it actually converges. In particular, in 1919, 
Viggo Brun (1885–1978) proved that the sum of the reciprocals of the twin primes is convergent, even 
though it is conjectured that there are an infinite number of them. Twin primes are those that differ by 
two. However, what this sum converges to (Brun’s Constant)378 can only be determined heuristically to 
eight decimal places as of 2018, OEIS A065421 tells us: 1.90216058. It seems that earlier attempts at 
greater accuracy are considered doubtful. 

Sums of reciprocals of figurate numbers 
The harmonic series is a special case of the sums of the reciprocals of the powers of the natural numbers, 
with k = 1: 
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When k > 1, these are examples of reciprocals of powers, which are figurate numbers, whose sums 
historically proved to be rather elusive, leading to some challenging mathematical problems, still not 
entirely resolved today, which we look at later. 

In the meantime, let us look at the triangular numbers, the most basic of the figurate numbers, where 
we need to find the limit of the partial sum: 
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where the summand is the reciprocal of the nth triangular number. Using partial fractions, this can be 
expressed as: 
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As you can see, this is a telescoping series, where terms from each consecutive pair cancel each other 
out. Thus, as N tends to infinity, the final term 1/(N + 1) goes to zero and so the sum of the reciprocals of 
the triangular numbers is 2, as Mengoli discovered, although this credit is usually given to the better-
known Christiaan Huygens (1629–1695).379 

Similarly, the limit of the sums of the reciprocals of the tetrahedral and pentatope numbers can be 
calculated using partial fractions and telescoping series, giving the limit values 1½ and 1⅓, respectively. 
The same technique can be used to calculate the sums of the reciprocals of the k-simplexes, also known as 
binomial coefficients C(n + k - 1, k), as we see in Pascal’s triangle on page 198. However, this is rather 
tedious. Andrew M. Rockett seems to provide an inductive proof that the limit of the sums of the 
reciprocals of the k-simplexes is k/(k - 1),380 although I have not followed the reasoning in detail. 
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We can extend the reciprocals of the triangular and square numbers into polygonal numbers, as 
another basic set of figurate numbers, which have been little explored until this century.381 Here are a few 
examples of the reciprocal numbers that I have found on the Web,382 including the OEIS, which provides 
all the formulae and decimal expansions. 

Polygonal number Sum of reciprocals Numerical value OEIS 

Pentagonal 3 ln3 −
√3𝜋
3  1.4820375018… A244641 

Hexagonal383 2 ln2 1.3862943611… A016627 

Heptagonal384 

1
15𝜋

¬25− 10√5+
2
3 ln5 +

1 + √5
3 ln�

1
2
¬10 − 2√5�

+
1 − √5
3 ln �

1
2
¬10+ 2√5� 

1.3227792531… A244639 

Octagonal385 3 ln3
4 +

√3𝜋
12  1.2774090576… A244645 

Nonagonal 
1
5J2 ln14 + 4 cos

𝜋
7 ∙ ln Jcos

3𝜋
14K+ sin

𝜋
14 ∙ ln Gsin

𝜋
7H − sin

3𝜋
14 ∙ ln Gcos

𝜋
14H

+ 𝜋 tan
3𝜋
14K 

1.2433209262… A244646 

Decagonal386 ln 2 +
𝜋
6 1.2167459562… A244647 

Given the complexity of these formulae, especially those related to odd-sided polygons, it is not 
surprising that the reciprocals of figurate numbers have not been explored further. Besides, as all figurate 
numbers stretch out more than triangular numbers, whose reciprocals sum to 2, the sums of the 
reciprocals of all these other examples must lie between 1 and 2, not particularly interesting in the context 
of this book, other in the case of the reciprocals of powers. 

Sums of reciprocals of Fibonacci and Lucas numbers 
While Mengoli, the Bernoulli brothers, and Euler made some progress in the seventeenth and eighteenth 
centuries with the sums of the reciprocals of the figurate numbers, it was not until the end of the 
nineteenth that mathematicians began to wonder about the sum of the reciprocals of the Fibonacci 
numbers. And, as far as I can tell, a general solution to the sums of the reciprocals of all Lucas sequences 
was not found until the 1980s. Alwyn F. Horadam in Australia387 and the brothers Jonathan M. Borwein 
and Peter B. Borwein in Canada,388 for instance, seem to have independently found solutions in 1986 and 
1987, respectively. 

Horadam provides a brief history of the topic, telling us that it was early recognized that to solve this 
problem a different approach was needed for the odd- and even-indexed Fibonacci numbers. First, Lucas 
sought to express the reciprocals of the even-indexed Fibonacci numbers in 1878 using Lambert series, 
named after Johann Heinrich Lambert (1728–1777), who defined this series in 1771 as: 
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Then, in 1883, Catalan attempted to solve the reciprocals of the odd-indexed Fibonacci numbers using 
Jacobian elliptic functions, which Edmund Landau (1877–1938) elaborated on in 1899 in terms of theta 
functions. Also in 1899, Charles-Ange Laisant (1841–1920) seems to be the first to desire to evaluate: 
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noting that this series evidently converges.389 
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As I am not familiar with these more advanced branches of mathematics, it is not easy for me to follow 
the reasoning of how mathematicians evaluate these reciprocals. Eric W. Weisstein provides an outline of 
the calculations of the sums of the reciprocals of the Fibonacci and Lucas numbers, telling us that they 
have both been given names, indicating their significance as examples of mathematical constants: 
Reciprocal Fibonacci Constant390 and Reciprocal Lucas Constant.391 

However, these constants are examples of the more general set of sums of the reciprocals of Lucas 
sequences, defined in the first section. We can first note that the ratio test shows that ρ < 1 for most of 
these series, as this table indicates: 

Lucas sequence ρ Related to Numerical value 

Fibonacci/Lucas 
1
𝜑
=

2
1 + √5

 Golden ratio 0.6180339887… 

Pell/Pell-Lucas 1/(1 + √2) Silver ratio 0.4142135624… 
 2/(3 + √13) Bronze mean 0.3027756377… 
 1/(2 + √5) Copper mean 0.2360679775… 
 2/(5 + √29) Nickel mean 0.1925824036… 
Mersenne/Fermat-Lucas 1  1 

To calculate the sums of the reciprocals of the Lucas sequences mentioned in the first section, I have 
used WolframAlpha to calculate the partial sums of the first 100 terms,392 which converge quickly, rather 
than a general algorithm. As you can see, the decimal expansions of only the three sequences that have 
been given names are included in the OEIS. 

Sum of reciprocals of Lucas sequences nth term Numerical value OEIS 

Fibonacci (Reciprocal Fibonacci Constant) √5/ ��
1 + √5
2

�
"

− �
1 − √5
2

�
"

¡ 3.3598856662… A079586 

Lucas (Reciprocal Lucas Constant) 1/ ��
1 + √5
2

�
"

+ �
1 − √5
2

�
"

¡ 1.9628581732… A093540 

Pell 2√2/G�1 + √2�
"
− �1 − √2�

"
H 1.8422030498… — 

Pell-Lucas 1/G�1 + √2�
"
+ �1 − √2�

"
H 0.7883239758… — 

‘Bronze’ 
√13/ ��

3 + √13
2

�
"

− �
3 − √13

2
�
"

¡ 1.4767947263… — 

1/ ��
3 + √13

2
�
"

+ �
3 − √13

2
�
"

¡ 0.4640730686… — 

‘Copper’ 
2√5/ G�2 + √5�

"
− �2 − √5�

"
H 1.3270042779… — 

1/ G�2 + √5�
"
+ �2 − √5�

"
H 0.3227787301… — 

‘Nickel’ 
√29/ ��

5 + √29
2

�
"

− �
5 − √29

2
�
"

¡ 1.2476357312… — 

1/ ��
5 + √29

2
�
"

+ �
5 − √29

2
�
"

¡ 0.2458834938… — 

Mersenne (Erdős-Borwein Constant) 1/(2" − 1) 1.6066951524… A065442 
Fermat-Lucas 1/(2" + 1) 0.7644997803… — 

Sum of reciprocals of Catalan numbers 
Even though the Catalan numbers have a multitude of different interpretations, the sum of their 
reciprocals is comparatively simple. To evaluate it, we need to determine: 
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Also, from the recurrence equation for the Catalan numbers, the ratio test gives: 
1
𝜌 = lim
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So the sum of the reciprocals of the Catalan numbers clearly converges. Rather surprisingly, it was not 
until 2014 that mathematicians found what the sum converged to, as far as I can tell. Using a generating 
function and some rather nifty calculus and algebra, Thomas Koshy and Zhenguang Gao found:393 

:
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2 +
4√3
27 𝜋 = 2.80613305077… 

This is A268813 in the OEIS, 1 more than A121839, the decimal expansion from n = 1. Koshy and 
Gao even calculated the sum of the reciprocals of the alternating Catalan numbers finding: 
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14
25 −

24√5
125 ln𝜑 =0.3534037083… 

where φ is the golden ratio (1 + √5)/2. The OEIS does not give this decimal expansion.	

Sum of reciprocals of partition numbers 
The OEIS’s Wiki page on the Partition function gives:394 
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Nevertheless, OEIS A078506 gives the decimal expansion of the sum of the inverses of the 
unrestricted partition function as 2.51059748389…. It seems from this that mathematicians have not 
found an algorithm for this sum, even using the most powerful tools relating to infinite series. 

Geometric series 
Just as an arithmetic series is formed from an arithmetic progression by adding a constant to an initial 
value, geometric series are formed from a geometric progression, which is a sequence of numbers formed 
by multiplying the last term in a sequence by a fixed, non-zero number, called the ‘common ratio’.395 Such 
a geometric sequence is thus that formed from this recurrence equation: 

𝑎"e$ = 𝑟𝑎"												𝑟𝑎d = 𝑎 ≠ 0 
where r is the common ratio. The general form of the geometric series is thus defined as  

𝑆" =:𝑎𝑟" = 𝑎 + 𝑎𝑟 + 𝑎𝑟A + 𝑎𝑟B + ⋯+
"

c=d

𝑎𝑟" 

To derive a closed-form expression for this geometric series, multiply each term by r to form: 
𝑟𝑆" = 𝑎𝑟 + 𝑎𝑟A + 𝑎𝑟B + 𝑎𝑟F +⋯+ 𝑎𝑟"e$ 

Subtracting one sum from the other, most of the terms cancel, giving: 
(1 − 𝑟)𝑆" = 1 − 𝑎𝑟"e$ 

giving 

𝑆" =:𝑎𝑟c = 𝑎
1 − 𝑟"e$

1 − 𝑟

"

c=d

 

This expression has a long history, Euclid proving it in his own manner, as Thomas Heath explains.396 
When r > 1, the geometric series clearly diverges to infinity. However, when |r| < 1, and setting a = 1, 

the series converges to this classic form: 

:𝑟c =
1

1 − 𝑟

�

c=d

= 1 + 𝑟 + 𝑟2 + 𝑟3 + ⋯+ 𝑟𝑛 + ⋯ 

As you can see, this equation has the form of the most fundamental generating function on page 244, 
but where r or x is no longer just a place-holder. With infinite series, in general, the variable is just that, it 
has a value, which could affect how the series behaves. This particular geometric series appears so 
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frequently in mathematics that blackpenredpen calls this formula his ‘best friend’ on his YouTube 
channel. 

As an aside and in preparation for looking at the way infinite series can be expressed as infinite 
products, Mu Prime Math shows on his YouTube channel such a relationship, which I have not seen 
elsewhere in the literature:397 

:𝑥c
�

c=d

=o(1+ 𝑥Ac)
�

c=d

=
1

1 − 𝑥 

When |r| < 1, it is sometimes convenient to view the common ratio as the reciprocal of a number 
greater than one, such as |q| > 1. For instance, when q = 2, we have:  

lim
"→�

:
1
2c =

"

c=d

1 +
1
2 +

1
4 +

1
8 +

1
16 +⋯+

1
2" = 2 

We have a situation here that is quite different from the harmonic series, which is convergent even 
though successive terms tend towards zero, greatly puzzling the uninitiated, as we see on page 275. For 
even though the reciprocals of the natural numbers in a geometric series similarly diminish to zero, the 
series itself is convergent, again causing much puzzlement. For here we have another series—as the sum 
of an infinite number of finite terms, but which has a finite value, a mystery that we need to unravel if we 
are to understand what is happening to humanity at the present time. 

Zeno of Elia (c. 490–430 BCE) was particularly perplexed by such a situation. As David M. Burton 
puts it in The History of Mathematics, “Zeno pointed out the logical absurdities arising from the concept of 
‘infinite divisibility’ of time and space.”398 This led Zeno to propose four clever paradoxes, the most 
famous of which is that of Achilles and the tortoise, which Aristotle described thus: “This claims that the 
slowest runner will never be caught by the fastest runner, because the one behind has first to reach the 
point from which the one in front started, and so the slower one is bound always to be in front.”399 

However, what Aristotle called the dichotomy paradox did not trouble Archimedes, when he came to 
find the limit of a geometric series, using the method of exhaustion, which Eudoxus of Cnidus400 

formalized from an original idea of Antiphon the Sophist,401 
and which Archimedes also used to estimate the value of π. In 
The Quadrature of the Parabola, Archimedes sought to find the 
area of a segment of a parabola cut off by a chord, as in this 
diagram from Wikipedia. 402  After Propositions 1–17, which 
found the area by mechanical means, Propositions 18–24 gave a 
geometric solution to the problem.403 

Archimedes first drew a triangle of area T to the point on the parabola where the tangent is parallel to 
the chord, knowing that a vertical dropped from this point would divide the horizontal base in half. He 
then drew further triangles, marked in green, based on the blue triangle, knowing from his knowledge of 
the properties of parabolas that the height of each green triangle is a quarter of the blue one. Thus, the 
area of the two green triangles is an eighth of the blue one. But he did not stop there. He successively 
drew further triangles in a similar manner, knowing that by the method of exhaustion they would 
eventually fill the entire space. In modern terms, we know that the area K of the segment is 4T/3, as this 
expression shows: 

𝐾 = 𝑇 + 2J
𝑇
8
K + 4J

𝑇
8A
K + 8J

𝑇
8B
K +⋯2" J

𝑇
8"
K +⋯ = J1 +

1
4 +

1
16 +

1
64 + ⋯

1
4" +⋯

K𝑇 =
4𝑇
3  



Unifying Mysticism and Mathematics 

 -281- 

However, “Archimedes did not refer to the sum of the infinite series, for infinite processes were 
frowned on in his day; instead he proved a double reductio ad absurdum that K can be neither more nor 
less than 4T/3.”404 

 
Little progress was made in understanding infinite series for a millennium and a half. Having proved 

that the harmonic series converges, Oresme then addressed the problem of convergent infinite series, 
apparently describing the general form of a geometric series when he wrote: 

… when the infinite series is of the nature that to a given magnitude there are added ‘proportional parts to infinity’ and 
the ratio a/b determining the proportional parts is less than one, the series has a finite sum. But when a > b, ‘the total 
would be infinite’; that is, the series would be divergent.405 
However, Oresme did explore some particular convergent geometric 

series, including that when r = ½, using a geometrical solution, not 
unlike this in Encyclopaedia Britannica. To find the sum of this series, 
Oresme first divided a square of area 1 in half, and then successively 
divided one of the halves that remained in half, filling the square, 
totalling 1. Adding this to the area of the original square gives the sum 
of 2 for this geometric series, as we see above. 

Oresme went even further. Boyer tells us that Oresme calculated this 
expression, where each term in the Archimedes geometric series is 
multiplied by a multiple of 3:406 

1 ∙ 3
4 +

2 ∙ 3
16 +

3 ∙ 3
64 +⋯+

𝑛 ∙ 3
4" +⋯ =

4
3 

He did so by first evaluating: 

𝐵 =:
𝑘
2c =

1
2 +

�

c=$

2
4 +

3
8 +

4
16 + ⋯+

𝑛
2" + ⋯ 

with an ingenious geometric solution.407 In effect, Oresme found the finite sum of an infinite series of 
infinite series in this way: 

1/2 + 1/4 +  1/8 +  1/16 +  …  = 1 
 1/4 +  1/8 +  1/16 +  …  = 1/2  
  1/8 +  1/16 +  …  = 1/4 
   1/16 +  …  = 1/8 
    ⋮  
1/2 +  2/4 + 3/8 + 4/16 + …  = 2 

Then, three hundred years later, Mengoli discovered an even more astonishing property of infinite 
series. Having proved that the harmonic series diverges in his own way, he proved that the alternating 
harmonic series converges to a finite value.408 This is not obvious, because by the ratio test, as for the 
harmonic series itself, 

𝜌 = lim
"→�

ü
𝑎"e$
𝑎"

ü = 1 

To prove that the alternating harmonic series converges, Chris Odden has a YouTube video showing 
that the partial sums of the even and odd terms in the series converge on the same finite value, from both 
sides, with the even and odd increasing and decreasing, respectively.409 But this does not tell us what this 
limit is. 

Rather surprisingly, we can use the geometric series to help here, as 3Blue1Brown explains on his own 
YouTube channel.410 We are seeking the sum S of 
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𝑆 = 1 −
1
2 +

1
3 −

1
4 +

1
5 −

1
6 +

1
7 −

1
8 + ⋯+

(−1)"

𝑛 +⋯ 
Now sometimes it is easier in mathematics to solve a more general problem than a particular one, as 

George Pólya points out in How To Solve It. In this case, let us form f(x) as: 

𝑓(𝑥) =
𝑥
1 −

𝑥A

2 +
𝑥B

3 −
𝑥F

4 +
𝑥I

5 −
𝑥N

6 +
𝑥¦

7 −
𝑥S

8 + ⋯+
(−1)"𝑥"

𝑛 + ⋯ 
Then differentiating, we have a geometric series with r = -x:  

𝑓À(𝑥) = 1 − 𝑥 + 𝑥A − 𝑥B + 𝑥F − 𝑥I + 𝑥N − 𝑥¦ +⋯ =
1

1 + 𝑥 
Now integrating 1/(1+x) between 0 and 1, as the antiderivative, gives:  

𝑆 = "
1

1 + 𝑥 𝑑𝑥 = ln(1 + 𝑥)|d$ =
$

d
ln(2) − ln(1) = ln(2) =0.6931471806…	

Newton later found the finite sum of the alternating harmonic series, calculating its value to 16 decimal 
places (OEIS A002162). However, it is important to note here that the alternating harmonic series is 
conditionally convergent, not absolutely, leading to a quite remarkable property, known as the Riemann 
Series Theorem. This states that a conditionally convergent series may be made to converge to any 
desired value or to diverge by a suitable rearrangement of terms,411 a situation that is closely related to the 
Euler–Mascheroni Constant γ.412 For instance: 

J1 −
1
2 −

1
4
K + J

1
3 −

1
6 −

1
8
K + J

1
5 −

1
10 −

1
12
K +⋯ =

1
2 ln 2

413 

and 

J1+
1
3 −

1
2
K + J

1
5 +

1
7 −

1
4
K + J

1
9 +

1
11 −

1
6
K + ⋯ =

3
2 ln2

414 

As a somewhat more complex example, Mathologer shows how we can rearrange the alternating 
harmonic series to converge to π or any other arbitrary number. First, collect all the positive and negative 
terms together to form two infinite series. Then, to set ∞ - ∞ to π, first find the partial sum of the 
positive numbers that just exceeds 3.14159. Then, add the first of the negative values, to go below π. To 
home in on π, add as many positive and negative terms as necessary to lead the partial sums closer and 
closer to π to as many decimal digits as desired.415 

 
If we now set r = -1 in the basic geometric series, we obtain this alternating series, sometimes called a 

Grandiʼs series, after Guido Grandi (1671–1742),416 which is causing mathematicians problems, even 
today: 

1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 +⋯ 
We saw in Chapter 3 that Bernard Bolzano looked at this series in the late 1840s in Paradoxes of the 

Infinite when addressing the tricky nature of infinity. He told us that in 1830, someone identified as 
M. R. S. had ‘proved’ this sum to be ½, which Bolzano declared to be a fallacy.417 

Similarly, in 2014, a physics professor at my old university in Nottingham ‘proved’ on a Numberphile 
YouTube video that this series converges to ½ using erroneous mathematical reasoning, as the first step to 
proving Ramanujan’s 1913 assertion that under some circumstances the infinite sum of the natural 
numbers is -1/12,418 which we look at page 307. As this video has been watched over seven million times, 
it has caused no end of confusion, which Mathologer splendidly clarified in a YouTube video in 2018, 
with 1.7 million views as of June 2020.419 

As mentioned on page 273, mathematicians divide all infinite series into those that converge on a finite 
value and those that do not, calling the latter divergent. However, there are different types of divergence. 
Some infinite series, like the natural numbers, diverge to infinity. Yet, in the case of this alternating 
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series, the values of the partial sums oscillate between 0 and 1, finite numbers. So, is there any sense in 
which this series converges? Indeed, there is, as Mathologer explains. 

If we first find its partial sums, as: 
1	0	1	0	1	0	1	0	1	0… 

and then take the average of the first n terms, we obtain these values: 

1	
1
2	
2
3	
1
2	
3
5	
1
2	
4
7	
1
2	
5
9	
1
2	… 

The averages for even-indexed numbers are ½ and for those for the odd ones, in position 2k – 1, are 
k/(2k-1) for n ≥ 1, which also tends to ½. So, in some sense, we can say that this series does converge to 
½. It is ‘Cesaro convergent’, named after Ernesto Cesàro (1859–1906). 

But how about the alternating series of the natural numbers: 
1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + 9 − 10 + ⋯ 

This is the reciprocal of the alternating harmonic series, which we have seen converges to ln(2). So, we 
might assume that this series diverges, as the opposite of convergence. But maybe there is also a sense in 
which it converges, which is, indeed, the case. As Mathologer explains, we again first form the partial 
sums, which eventually oscillate between +∞ and -∞, unlike those in the previous example, which 
oscillate between finite values. 

1	-1	2	-2	3	-3	4	-4	5	-5	…	
So, it is perhaps not surprising that the averages of their partial sums do not converge: 

1	0	
2
3 	0	

3
5 	0	

4
7 	0	

5
9 	0	… 

However, if we take the average of these averages, we obtain: 

1	
1
2	
5
9	
5
12	

34
75	

34
90	

298
735	

298
840	

1069
2835	

1069
3150	… 

which slowly tends to ¼, as Numberphile stated by dubious reasoning, although what the formula for 
the nth term is is not easy to determine. So, once again, we have a non-convergent series that does 
converge in some sense. 

 
There is one other variation of a geometric series that merits mention. We have seen that Oresme 

created a convergent geometric series with the numerators as the multiple of a constant. In Tractatus de 
Seriebus Infinitis, Jakob Bernoulli generalized this series with an arithmetic series in the numerator:420 

𝑎
𝑏 +

𝑎 + 𝑐
𝑏𝑑 +

𝑎 + 2𝑐
𝑏𝑑A +

𝑎 + 3𝑐
𝑏𝑑B +⋯ 

Bernoulli evaluated this series by decomposing it into an infinite geometric series of geometric series, 
not unlike Oresme, but using algebraic reasoning rather than geometric. In this way, he found that its 
sum is: 

𝑎𝑑A − 𝑎𝑑 + 𝑐𝑑
𝑏𝑑A − 2𝑏𝑑 + 𝑏 =

𝑑(𝑎𝑑 − 𝑎 + 𝑐)
𝑏(𝑑A − 2𝑑 + 1) 

For instance, when a = 1, b = 3, c = 5, and d = 7, we have:421 
1
3 +

6
21 +

11
147 +

16
1029 +

21
7203 +

26
50421 + ⋯ =

77
108 

Bernoulli’s 36-page treatise marks the culmination of mathematicians’ endeavours to master infinite 
series during the seventeenth century. So, it is rather strange that there is no translation into English of 
this significant work in the history of mathematical ideas, as far as I can tell.  
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But before we look at the developments that came after Bernoulli, let us briefly look at a few of the 
ubiquitous applications of the geometric series. One use is in fractional-reserve banking, which allows 
banks to lend far more money than they have in reserve, effectively creating money out of nothing, as I 
explain in my book The Theory of Everything from 2014. As this is an insane way of conducting our 
business affairs, enabling wars to be funded, there is no need to dwell on this application further. 

Rather, if we are ever to live in love, peace, and harmony with each other, we need to make the most 
radical change to the work ethic since the invention of money some four thousand years ago. By being 
free of our mechanistic cultural conditioning, we can take the abstractions of mathematicians, outlined in 
Chapter 5 on ‘Universal Algebra’, to the utmost level of generality, viewing the manifest Cosmos as a 
meaningful, holographic information system with the property of self-similarity, emerging directly from 
the meaningless Absolute, as the Datum of the Universe. 

To give a simple illustration, Wikipedia shows us how we can use a 
geometric series to determine the area of a fractal like the Koch 
snowflake, named after Helge von Koch (1870–1924). Each added 
triangle is one ninth of the size of the initiating triangle and, after the 
green triangles, their number increases by a factor of 4, giving the total 
area as: 

𝐴 = 	1 + 3J
1
9
K + 3 ∙ 4 J

1
9
K
A

+ 3 ∙ 4A J
1
9
K
B

+ ⋯ 

Ignoring the first term, this is a geometric series whose first term is a 
= 3(1/9) = 1/3 and whose constant ratio is r = 4/9. The total area of the 
Koch snowflake is thus: 

𝐴 = 1 +
𝑎

1 − 𝑟 = 1 +
1/3

1 − 4/9 =
8
5 

In contrast, the perimeter of the Koch snowflake tends towards infinity. For at each iteration, the 
number of edges increases by a factor of 4, while the length of each edge decreases by 1/3, giving r = 4/3 
in the geometric series, which thus converges. So the infinite perimeter of the Koch snowflake encloses a 
finite area, another surprising result. 

As Integral Relational Logic shows that the underlying structure of the Cosmos is a multidimensional 
network of hierarchical relationships, simply represented as a holographic, self-similar mathematical 
graph, we can map the whole of evolution since the most recent big bang as a coherent whole. Then, as 
my 2016 book Through Evolution’s Accumulation Point: Towards Its Glorious Culmination explains, we can 
use nonlinear systems dynamics to develop a comprehensive evolutionary model of the whole of evolution 
since the most recent big bang, describing why society is degenerating into chaos at the present time.  

The most appropriate mathematical tool for this study is the logistic map,422 the discrete form of the 
logistic function, which Pierre-François Verhulst (1804–1849) introduced in 1844 to study the potential 
growth of the population of the newly formed nation of Belgium. 423  To represent growth under 
constraint, Robert M. May wrote a seminal paper on this first-order, nonlinear difference equation in 
1976,424 when studying a hypothetical population of fish living in a pond, whose growth, by its nature, is 
limited.425 The canonical form of the logistic map is,  

𝑥"e$ = 	𝑟𝑥"(1 − 𝑥") 
where r denotes the rate of growth in some sense, lying in the range [0,4], and the term 1 - xn keeps 

the growth within bounds, since as xn rises, 1 - xn falls.426  
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May, who later became Chief Scientific Adviser to the 
UK Government and President of the Royal Society of 
London, was staggered by the results. Without going further 
into the mathematical details, he discovered that the 
iterations of the recursive logistic map first converge on 
single values. Then they begin to bifurcate, as this diagram 
from Steven H. Strogatz’s popular Nonlinear Dynamics and 
Chaos illustrates.427 

In 1978, Mitchell J. Feigenbaum then published an even 
more amazing result. The periods between successive 
bifurcations, denoted by the deltas, diminish by a constant 
factor, known today as the reciprocal of the Feigenbaum bifurcation velocity constant δ,428 which is given 
by this formula (OEIS 006890): 

lim
"→�

∆"
∆"e$

=4.6692016091… 

This mathematical constant is not found only in the logistic map. It also lies at the heart of a wide-
range of functions, a characteristic that Feigenbaum called ‘universality theory’. As he said, “This definite 
number must appear as a natural rate in oscillators, populations, fluids, and all systems exhibiting a 
period-doubling route to turbulence! … So long as a system possesses certain qualitative properties that 
enable it to undergo this route to complexity, its quantitative properties are determined.”429 

However, bifurcations do not continue indefinitely, for they get shorter and shorter by a factor 
approaching 1/4.6692 in a geometric series, giving its approximate sum as: 

1 +
1

4.6692 +
1

4.6692A +
1

4.6692B +⋯ =
1

1 − 1
4.6692

≈ 1.2725 

As the whole of evolution is a bifurcating system, we can use this geometric series to calculate what its 
limiting point is, known as evolution’s Accumulation Point, as illustrated in this diagram: 

 
As the most recent big bang happened about fourteen billion years ago, we need to set a in the general 

geometric series in order to approximate the sum of all the periods between evolution’s major turning 
points to the length of time since then. This we can do by setting a = 14,000,000,000/1.2725, which is 
about eleven billion years, the length of time between the most recent big bang and the emergence of the 
first self-reproducing forms of life on Earth. Of course, this calculation does not enable us to calculate 
when evolution’s Accumulation Point happens to any accuracy. 
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All that is necessary to do this is to note that the periods between the last three points in the above 
chart, whose dates we know reasonably accurately, diminish by the reciprocal of δ. In this way, we can 
estimate that evolution’s Accumulation Point happened about 2004, give or take a couple of years, 
explaining why the world is degenerating into increasing chaos at the moment. Nick Hoggard, a software 
developer, who presented this evolutionary model at the continental meeting of the Scientific and 
Medical Network in Sweden in 2000, likened this model to a dripping tap, where the increasing rate of 
drips corresponds to evolution’s major turning points. As evolution has now passed through its 
Accumulation Point, the evolutionary tap is now turned full on, with no more discrete turning points to 

be discerned. 
However, this does not mean that evolution has 

come to an end, any more than Achilles and the 
tortoise stop running or crawling when they come 
to the end of their race. We are effectively now 
living at a time beyond the infinite, the most 
momentous event in evolutionary history, requiring 
us to make the most radical change to the way we 
live our lives, if we are able to awarely adapt to our 
rapidly changing environment. 

Taylor and Maclaurin series 
Before we look at the exponential function and its related series, as the archetypal growth series in 
mathematics, it is helpful to look at the so-called Taylor and Maclaurin series, often taught to high-
school students when they begin to study calculus. However, there is some confusion in the literature 
about nomenclature, which I have only unravelled when researching this topic. 

It is easiest to begin with Colin Maclaurin (1698–1746), who was something of a prodigy, becoming a 
professor of mathematics at nineteen,430 who wrote his treatise nearly thirty years after that of Brook 
Taylor (1685–1713). Maclaurin wrote A Treatise of Fluxions in 1742, “partly in response to the criticism of 
the foundations of the theory of fluxions voiced by George Berkeley eight years earlier”,431 when Berkeley 
said that fluxions are ‘ghosts of departed quantities’, mentioned in Chapter 3.  

In his treatise, Maclaurin wondered whether it would be possible to express an infinitely differentiable, 
continuous function in terms of a polynomial with suitable coefficients A, B, C, D, and so on, for 
integrating and differentiating terms in a polynomial, as powers of x, lie at the foundation of the calculus: 

𝑓(𝑥) = 𝐴 + 𝐵𝑥 + 𝐶𝑥A + 𝐷𝑥B +⋯ 
By differentiating this polynomial over and over again and setting x = 0, thereby successively leaving 

only the first term each time, Maclaurin found values for the coefficients thus:432 

𝑓(𝑥) = 𝑓(0) +
𝑓À(0)
1! 𝑥 +

𝑓ÀÀ(0)
2! 𝑥A +

𝑓ÀÀÀ(0)
3! 𝑥B + ⋯+

𝑓(")(0)
𝑛! 𝑥" +⋯ 

For instance, here are the familiar Maclaurin series for examples of complementary trigonometric and 
hyperbolic functions: 

sin 𝑥 = 𝑥 −
𝑥B

3! +
𝑥I

5! −
𝑥¦

7! +⋯ =:
(−1)"

2𝑛 + 1𝑥
A"e$

�

"=d

 

sinh 𝑥 = 𝑥 +
𝑥B

3! +
𝑥I

5! +
𝑥¦

7! + ⋯ =:
1

2𝑛 + 1

�

"=d

𝑥A"e$ 

Maclaurin acknowledged that his series is ‘only’ a special case of the more general Taylor series, not 
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knowing that James Stirling had published this particular series more than a dozen years earlier than 
Maclaurin in Methodus Differentialis. 433  In turn, Taylor, secretary of the Royal Society for a time, 
published his series in Methodus Incrementorum Directa et Inversa in 1715, not knowing that James Gregory 
(1638–1675) had formulated such a series in Geometriae pars universalis (The Universal Parts of Geometry) in 
1668, coming close to discovering the calculus, unknown to Newton.434 

Be that as it may, here are two expressions for the Taylor series, formed in a different manner from 
that of Maclaurin: 

𝑓(𝑥 + 𝑎) = 𝑓(𝑎) + 𝑓À(𝑎)𝑥 + 𝑓ÀÀ(𝑎)
𝑥A

2! + 𝑓
ÀÀÀ(𝑎)

𝑥B

3! + ⋯+ 𝑓(")(𝑎)
𝑥"

𝑛! + ⋯
435 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓À(𝑎)(𝑥 − 𝑎) +
𝑓ÀÀ(𝑎)
2! (𝑥 − 𝑎)A +

𝑓ÀÀÀ(𝑎)
3! (𝑥 − 𝑎)B +⋯+

𝑓(")(𝑎)
𝑛! (𝑥 − 𝑎)" +⋯ 436 

As you can see, setting a = 0 gives the Maclaurin series. However, in general, the Taylor series is not 
directly expressed as a polynomial. For instance, Wolfram MathWorld gives: 

sin𝑥 = sin 𝑎 + cos 𝑎(𝑥 − 𝑎) −
1
2 sin𝑎(𝑥 − 𝑎)

A −
1
6 cos𝑎(𝑥 − 𝑎)

B +⋯ 

Setting a = 0 immediately gives the Maclaurin series for sin𝑥 as a polynomial. But presumably setting a 
to any other value would also do so by expanding terms like (𝑥 − 𝑎)", such as (𝑥 − «

A
)" or even (𝑥 − «

F
)", 

for each n, where sin «
F
= cos «

F
= √A

A
. 

Yet the more commonly used Maclaurin series is often referred to as a Taylor series. For instance, in 
their influential textbook What is Mathematics?, Courant and Robbins derive the Maclaurin series along 
the lines above, but call it a Taylor series.437 The general Taylor series is not mentioned in this book, 
presumably because it is less useful, and neither is the name of Colin Maclaurin. 

Exponential and logarithmic functions 
Having seen that infinitely differential functions can be expressed as an infinite series, we now need to 
look at the two functions that concern us most in our studies of our rapidly changing world: the 
exponential function, which models accelerating growth and rates of change, and its dual, the logarithmic 
function. 

We saw in Chapter 3 that exponentiation can be viewed as repeated multiplication, just as 
multiplication is repeated addition. But this interpretation only works when the exponentiation factor is a 
natural number. It does not apply when this factor is a real or complex number, as briefly illustrated with 
the expression ii in the previous chapter. We need exponential series, as polynomials, to best understand 
the exponential function, as Euler demonstrated in the eighteenth century. 

But first, we once again need to go back to first principles, with logarithms rather than exponentials.438 
For historically, a logarithmic series appeared before an exponential one, with mathematicians in the 
1600s coming close to the mysterious constant e without understanding what it is.439 Let us therefore look 
at the relationship between the arithmetic and geometric progressions, illustrated in this table: 

0 1 2 3 4 5 6 7 8 
1 2 4 8 16 32 64 128 256 

The German monk Michael Stifel (1487–1567) published such a table in Arithmetica Integra in 1544, 
pointing out that the sum of two terms in the upper arithmetic progression has a connection with the 
corresponding product of two terms in the lower geometric progression.440 For instance,  

8 × 32 = 2B × 2I = 2BeI = 2S = 256 
This relationship probably gave John Napier (1550–1617), Baron Merchiston of Scotland, the idea of 

developing a procedure that would substitute the operations of addition and subtraction for those of 
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multiplication and division, making calculations very much easier. Accordingly, Napier set out to pair the 
terms of a geometric series with those of an arithmetic one, spending twenty years calculating what he 
was to call logarithms ‘reckoning number’, from Greek logos ‘reckoning, ratio’ and arithmos ‘number’. He 
published his results in 1614 in a small Latin volume of 147 pages—90 of which were tables—with the title 
Mirifici Logarithmorum Canonis Descriptio (A Description of the Marvellous Rule of Logarithms). His son 
Robert then posthumously published Napier’s account of how the tables were constructed, written earlier, 
in Mirifici Logarithmorum Canonis Constructio (The Construction of the Wonderful Canon of Logarithms).441 

There is no need to go into Napier’s method of calculating logarithms in detail because it doesn’t 
enhance conceptual understanding, not the least because he had no idea of the concept of base for 
logarithms, as we know it today. We only need to note that Napier used a formula not unlike this, 
effectively using a base of 1/e for his calculations:442 

1
𝑒 = lim

"→�
J1 −

1
𝑛
K
"

 

Napier’s concept of logarithms quickly caught on, not the least with Kepler, who had performed 
thousands of tedious calculations without the use of logarithms in discovering the first two laws of 
planetary motion, published in New Astronomy in 1609, ignored by Galileo but not Newton. In 1620, 
Kepler wrote a laudatory oration to the Baron of Merchiston, not knowing that he had died,443 and then, 
in his own industrious manner, seeking to go to the heart of the matter, he set out in the winter of 1621–
22 to write his own book on logarithms, published in 1623. Kepler was thus able to complete the task for 
which he had been appointed as Imperial Mathematicus to the Holy Roman Emperor in Prague in 1601, 
following the death of Tycho Brahe: to publish Tycho’s one thousand measurements of the stars and 
those of planetary motion. Following a dispute with Tycho’s relatives, these were eventually published in 
1627 as Tabulæ Rudolphiæ ‘Rudolphine Tables’, in honour of Rudolf II.444 

In the meantime, in England, Henry Briggs (1561–1631) embarked on the tedious task of preparing the 
first set of common, or Briggsian, logarithms using 10 as a base, published in 1624 as Arithmetical 
Logarithmica, which the Dutchman Adrian Vlacq (1600–1666) expanded in a second edition in 1628, 
calculated to 14 and 10 decimal places. Also, in 1622, William Oughtred (1574–1660) invented the slide 
rule, as a mechanical device based on the additive power of logarithms.445 Thus were established the basic 
tools I needed as a mathematician at school and university in the 1950s and 60s, not now much used 
following the invention of the pocket calculator, personal computer, and smart phones . 

However, while logarithms were of great practical use, it was to take some time before they were fully 
understood as a function, rather than as a means of simplifying multiplication. Today, it is obvious to us 
that logarithms are the dual of exponents. For, if x = bt, then we know that t = logb x. That is, t is log to 
the base b of x. But it wasn’t until the 1680s that this relationship began to appear in the consciousness of 
mathematicians and hence in their writings. And it was not until 1748, when Euler published Introductio 
in analysin infinitorum (Introduction to the Analysis of the Infinite), laying down the foundations of modern 
mathematical analysis, that a full understanding was developed.446 

There is no need to go into this long learning process, one of many examples illustrating the way 
evolution progresses in the noosphere. All that is relevant for this book is to highlight a couple of points 
that could help us become more aware of what is happening to humanity at the present time., 

First, the following diagram plots the logarithmic function for base 2, corresponding to Stifel’s table on 
page 287, denoted by the bullets on the curve. For instance, we can see that log 1 is 0, which is true of all 
logarithms, no matter what their base. Also, log2 2 = 1, which is an example of the general principle 
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logb b = 1. The graph then shows how the next few 
terms on the x-axis, which are in an arithmetic series, 
become a logarithmic scale on the y-axis. 

This is particularly useful when plotting geometric 
and exponential phenomena, for their graphs rapidly 
disappear off the page using arithmetic scales. On the 
other hand, when using a semilogarithmic chart, in 
which exponents follow a geometric progression, 
exponential growth can be depicted as a straight line, 
nevertheless still stretching out to infinity. Or, in the 
case of a diminishing geometric series, when r < 1 in the 
expression for Sn on page 279, the straight line crosses the x-axis, when y = 0, at a finite, limiting point. 
As evolution as a whole can be represented as a diminishing geometric series, such a plot is especially 
useful in seeing humanity’s place in the overall scheme of things. 

We now need to ask what is so special about logarithms to the base e, which is approximately 2.71828. 
Surely it would be much simpler to use an integer as a base. For instance, if we express the x-axis in the 
plot of log2 x in binary, then 2, 4, and 8 become 10, 100, 1000, as they are in log10 x, or indeed any other 
number system such as base 3, 7, or 16, with hexadecimal digits used in computers.  

The key publication in this regard was Logarithmotechnia by Nicholas Mercator (c. 1619–1687), who 
called logarithms to the base e ‘natural logarithms’ in 1668.447 Mercator, not to be confused with Gerardus 
Mercator (1512–1594) of map projection fame, did so from the equation xy = 1 for the rectangular 
hyperbola, which led him to find this Taylor series, although Gregorius Saint-Vincent (1584–1667) had 
already found a similar expression in 1647 in a monumental, but flawed work titled Opus geometricum 
quadraturae circuli sectionum coni (Geometric work on the quadrature of the circle of conic sections):448 

ln(1 + 𝑥) = 𝑥 −
𝑥A

2 +
𝑥B

3 −
𝑥F

4 +
𝑥I

5 −⋯ 

As we can see, by setting x = 1, we have the value of the alternating harmonic series, which Mengoli 
discovered in 1647, as described on page 282. Today, the general series is known as the Mercator Series,449 
but sometimes as the Mercator-Newton Series,450 because Newton had found it in October 1666, when 
hiding from the plague in London. Newton was upset in 1669 because someone else had published this 
result before him. So he wrote a short tract titled De Analyst per Æquationes Numero Terminorum Infinitas 
(On the Analysis by Equations Unlimited in the Number of Their Terms), which probably led Isaac Barrow 
(1630–1677) to recommend Newton as the Lucasian professor of mathematics at Cambridge University.451 

One way of seeing why e is the base of the natural logarithm is 
with the fundamental theorem of the calculus, in which Leibniz and 
Newton showed that the slope of a curve at a particular point, 
obtained through differentiation, is the inverse of integration, as the 
area under a curve, as we see in Chapter 3. For instance, the area 
shaded orange in this Wikipedia diagram of the hyperbolic function 
is log 6 to base e, generally denoted as ln, as we have seen. In 
general, 

ln 𝑎 = "
1
𝑥

ð

$
𝑑𝑥 
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So, if a = e, the area under the curve is 1, a geometric representation of e, as Mathologer points out on 
his YouTube channel.452 A somewhat more complex way to illustrate the naturalness of e as the base of 
logarithms arises from reversing the integral. Of course, if we differentiate ln x, we get back to 1/x. But 
what is the differential of logb x? Well, to convert logs from one base to another, we use this formula: 

log* 𝑥 =
logc 𝑥
logc 𝑏

 

So, differentiating this function, using Leibniz’s notation for the differential: 
𝑑
𝑑𝑥 log* 𝑥 =

𝑑
𝑑𝑥
J
ln 𝑥
ln 𝑏

K =
1
ln 𝑏 ∙

𝑑
𝑑𝑥 (ln 𝑥) =

1
𝑥 ln 𝑏 

Now when x = 1, logb x = 0, and the slope of the logarithm function as it crosses the x-axis is 1/ln(b). 
This number is greater or less than one depending on whether b is less or greater than e. For instance, ln 2 
and ln 10 are 0.693147 and 2.302585, respectively. But when b = e, the slope at this critical point is 1. 
Wikipedia suggests that this key characteristic of e is what makes logarithms to this fundamental 
mathematical constant natural.453 This explanation is rather elusive, not nearly as obvious as the concept 
of p. 

 
Despite mathematicians using natural logarithms to base e for much of the second half of the 

seventeenth century, it was to take until the midddle of the next century before Euler eventually showed 
how to calculate its value. In the meantime, in 1683, Jakob Bernoulli found the integer bounds of e when 
studying compound interest,454 having little understanding of the broader and deeper aspects of what he 
was doing, characteristic of so much human learning since the dawn of history.  

The following chart, from Wikipedia,455 illustrates the central issue, where the compound interest is 
20%. In general, if we begin with a principal of P, which is compounded at an annual rate of interest r, 
then at the end of t years it is P∙(1+r)t, which is a geometric progression from year to year. 

 
However, what happens if the interest is paid more frequently? In general, if interest is paid n times 

per year at the rate r/n, then the principal Pt at t years is: 

𝑃p = 𝑃 ∙ G1 +
𝑟
𝑛H

"p
 

But then Bernoulli wondered what is the value of: 

1 2 3 4 5 6 7 8 9 10
Years

1000

2000

3000

4000

5000
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Dollars

Yearly

Quarterly

Monthly

Continuously
Compounding Frequency
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lim
"→�

J1 +
1
𝑛
K
"

 

where the rate of interest is effectively 100% and interest is paid continuously? Well, he used the 
binomial theorem to calculate that the range of possible values is between 2 and 3:456 

J1+
1
𝑛
K
"

< 1 +
1
1 +

1
1 ∙ 2 + ⋯+

1
1 ∙ 2…𝑛 < 1 + 1 +

1
2 +

1
2A +

1
2"E$ < 3 

In the event, it was not until 1748 that Euler was able to develop a formula for this expression that 
enables it to be calculated to any level of accuracy whatsoever. He did so in Introductio in analysin 
infinitorum (Introduction to Analysis of the Infinite), regarded by many as the greatest mathematics book 
ever written, although Euler had difficulty in finding a publisher for it, having spent most of the 1740s 
writing it.457 

One reason why this book has been so influential is that it starts from first principles, defining a few 
basic concepts before building structures of ever-increasing complexity in a natural evolutionary manner. 
For instance, Chapter 1 ‘On Functions in General’ begins with definitions of constant and variable 
quantities before giving this definition of function: 

A function of a variable quantity is an analytic expression composed in any way whatsoever of the variable 
quantity and numbers or constant quantities.458 

Although this definition seems to equate function with formula, “nonetheless this analytic definition 
was a vast improvement over the ill-considered geometric notion of ‘curve’,” introducing a profound 
change in the mathematical landscape. Rather, function is defined more today as “to each x there 
corresponds a unique y in the range,” a formulation that Euler was later to approach.459 

Constants, variables, and functions today play a similar role in software development to that of 
mathematics. For instance, as a function f(x) is a variable quantity in modern notation, it can be both the 
input to a function, as g(f(x)), and the output. But does this mean that computer functions could create 
new functions that have never existed before without human intervention? 

As this book is at pains to point out, the answer is a resounding NO! Functions are essentially 
mechanistic, operating in the horizontal dimension of time. So, if we are to become free of our 
mechanistic behaviour and realize our fullest potential as superintelligent humans, then we need to admit 
the creative power of Life into science, emerging directly from the Absolute, as the Divine Datum of the 
Universe, that which is given. 

Even though Euler did not admit Life into his reasoning, as doing so is countercultural, he 
nevertheless made enormous progress in providing mathematicians with the tools they need to study 
growth and rates of change. He did so by showing that logarithms are functions, complementary duals of 
exponential functions, in conformity with the Principle of Unity, the fundamental law of the Universe. 
However, these tools are mainly applied in physics and engineering, for instance, not generally applied in 
evolutionary and psychological studies, which are necessary if we are to understand what it truly means to 
be a human being.  

Starting as usual with simple, basic concepts, Chapter VI ‘On Exponentials and Logarithms’ begins 
with the basic exponential function az, where a is a constant and the exponent z is a variable, standing for 
‘all determined numbers’.460 When z is a natural number, az is a member of a geometric progression or 
sequence, regarding exponentiation as repeated multiplication. However, when z is a real or complex 
number, such notation breaks down. To clarify this situation, mathematicians sometimes denote ez as 
exp(z),461 although Euler did not do so. We could therefore denote the general exponential function as 
aexp(z). 
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So, as logarithms are functions, while az gives y, for instance, z = log(y),462 not unlike the way that 
differentiation and integration are duals of each other. So, just as logarithms convert multiplication into 
addition, like this: 

log*(𝑥 ∙ 𝑦) = log*(𝑥) + log*(𝑦) 
exponentials convert addition into multiplication, like this:463 

𝑎ØeÚ = 𝑎Ø ∙ 𝑎Ú 
Then, in Chapter VII ‘Exponentials and Logarithms Expressed through Series’, Euler set out to do 

just that. He began by defining 𝑎+ = 1 + 𝜑, where ω and	 φ	 are infinitesimal quantities, a device that 
Euler often used before the formal development of limits in the next century, as we see in Chapter 3. He 
then let 𝜑 = 𝑘𝜔, giving 𝑎+ = 1 + 𝑘𝜔. Thus, 𝜔 = log(1 + 𝑘𝜔), where a is the base of the logarithm and k 
is a finite number that depends on the value of the base a in some, as yet, unknown way.	

To determine an infinite series for 𝑎+, Euler then introduced the variable j, as a finite exponential 
power, to give 𝑎¥+ = (1 + 𝑘𝜔)¥. Then, setting 𝑗 = 𝑧/𝜔, we have 𝜔 = 𝑧/𝑗 and so:464 

𝑎/ = J1 +
𝑘𝑧
𝑗
K
¥

 

This is an expression not unlike that which Bernoulli had explored over half a century earlier. Then 
Euler expanded the series using Newton’s generalized binomial series,465 gathering all the coefficients in j 
to knzn/n! together, noting that they all tend to 1 as n tends to infinity. By thus eliminating j from the 
expansion, Euler arrived at this Maclaurin series, changing z to the more usual x: 

𝑎Ø = 1 + 𝑘𝑥 +
𝑘A

2!
𝑥A +

𝑘B

3!
𝑥B +

𝑘F

4!
𝑥F +⋯ 

Now, choosing a as the particular base for which k = 1 and also setting x = 1, we can see that  

𝑎 = 1 + 1 +
1
2! +

1
3! +

1
4! +⋯ 

which Euler calculated as a = 2.71828182845904523536028… (OEIS A001113). As he said, “when 
this base is chosen, the logarithms are called natural or hyperbolic. The latter name is used since the 
quadrature of a hyperbola can be expressed through these logarithms. For the sake of brevity for this 
number 2.718281828459… we will use the symbol e.”466 So, after nearly a century and half of struggle, 
Euler had found the value of the base of the natural logarithm, which is today known as ‘Euler’s number’, 
although e stands for neither exponential nor his name. 

Setting a = e and k = 1 in the infinite series for ax, we have this general expression for the exponential 
function, itself: 

exp(𝑥) = 𝑒Ø = lim
"→�

G1 +
𝑥
𝑛
H
"
= :

𝑥c

𝑛!

�

"=d

= 1 +
𝑥
1!
+
𝑥A

2!
+
𝑥B

3!
+ ⋯ 

We can see immediately from this infinite series why the exponential function archetypically measures 
growth and rates of change, determined by differentiating the function. For, by doing so, we obtain: 

𝑓À(𝑥) = 0 +
1
1!
+
2𝑥
2!
+
3𝑥A

3!
+⋯ = 1 + 𝑥 +

𝑥A

2!
+
𝑥B

3!
+⋯ 

The differential of the exponential function is thus the exponential function itself. Furthermore, 
acceleration is also denoted by the exponential function, for  𝑓′′(𝑥) = 𝑒Ø, as are all successive derivatives. 
The rate at which acceleration changes and accelerates is also exponential, and so on ad infinitum! In 
other words, the exponential function, as an expression of accumulative processes, such as evolution, never 
slows down if there are no constraints for it do so, such as population growth, as I explain in my book 
Through Evolution’s Accumulation Point.  
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Now, as Taylor and Maclaurin showed that infinitely differentiable functions can be expressed as 

infinite power series, there is a fascinating relationship between exponential and trigonometric and 
hyperbolic functions. To prove this, we need to introduce the strange notion of an imaginary exponent, 
which is a far remove from exponentiation as repeated multiplication. To do so, we first set x = iz in the 
expansion of the exponential function, giving: 

𝑒</ = 1+ 𝑖𝑧+
(𝑖𝑧)A

2!
+
(𝑖𝑧)B

3!
+
(𝑖𝑧)F

3!
+
(𝑖𝑧)I

3!
+⋯ = 1 + 𝑖𝑧 −

𝑧A

2!
−
𝑖𝑧B

3!
+
𝑧F

3!
+
𝑖𝑧I

3!
+ 

for i4n = 1, i(4n+1) = i, i(4n+2) = -1, and i(4n+3) = -i, for n ≥ 0. Gathering the real and imaginary parts 
together, we thus have: 

𝑒</ = 1 −
𝑧A

2!
+
𝑧F

3!
− ⋯+ 𝑖 �𝑧 −

𝑧B

3!
+
𝑧I

5!
− ⋯� 

Now, the real and imaginary parts of this expansion are those for the cosine and sine functions, 
respectively, a discovery usually attributed to Newton. 467  However, modern research indicates that 
Madhava of Sangamagrama in Kerala, India, was the first to find Maclaurin series for these functions in 
1400, over two and a half centuries before Newton did so in Europe around 1670.468 Representing z as an 
angle q, gives: 

sin 𝜃 = :
(−1)"

(2𝑛 + 1)! 𝜃
A"e$ = 𝜃 −

𝜃B

3! +
𝜃I

5! − ⋯
�

"=d

 

and 

cos𝜃 = :
(−1)"

(2𝑛)! 𝜃
A" = 1 −

𝜃A

2! +
𝜃F

4! −⋯
�

"=d

 

We can thus see that  
𝑒<å = cos 𝜃 + 𝑖 sin 𝜃 

known today as Euler’s formula, which shows the relationship between analysis and trigonometry,469 
although this is not how Euler proved it in Chapter VIII ‘On Transcendental Quantities Which Arise 
from the Circle’ of Introductio, as the Eulerian scholar Ed Sandifer explains in his Web column How 
Euler Did It.470 Rather, using his familiar technique of infinitesimals and infinity, Euler first found these 
two expressions for cos and sin and derived his formula from them:471 

cos𝜃 = ℜ�𝑒<å� =
𝑒<å + 𝑒E<å

2  

and 

sin𝜃 = ℑ�𝑒<å� =
𝑒<å − 𝑒E<å

2𝑖  

This diagram from Wikipedia shows these relationships using the unit 
circle in the complex plane. Here, the polar coordinates of a point on this 
circle are expressed as 𝑒<å, where θ is the angle between the real axis and 
the vector ending on the unit circle. 

Now setting q to p or p/2 in Euler’s formula gives the most amazing 
formula in mathematics, known as Euler’s identity: 

𝑒<« = −1 
This is sometimes rearranged as: 

𝑒<« + 1 = 0 
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giving a relationship between five fundamental constants in mathematics in the simplest possible 
terms. We can see from the diagram that 𝑒<p is the point -1 on the unit circle at its leftmost point, 180° 
from the base real axis. 

However, Euler never explicitly set q to p in his identity, although he had twice come close to his 
famous formula earlier in his studies, as had Roger Cotes (1662–1716), Johann Bernoulli, and DeMoivre. 
Indeed, it is not clear from the literature who first explicitly expressed this formula in writing, Sandifer 
tells us.472 

If we now set θ to ix in the formulae for cos and sin, we find a relationship between the exponential 
and hyperbolic functions: 

cos(𝑖𝑥) =
𝑒EØ + 𝑒Ø

2 = cosh(𝑥) 

sin(𝑖𝑥) =
𝑒EØ − 𝑒Ø

2𝑖 = 𝑖 J
𝑒Ø − 𝑒EØ

2
K = sinh(𝑥) 

In other words, all the alternating signs in the trigonometric expansions 
become positive in the hyperbolic ones and we have: 

cosh(x) = :
1

(2𝑛)! 𝑥
A" = 1 +

𝑥A

2! +
𝑥F

4! − ⋯
�

"=d

 

sinh( 𝑥) = :
1

(2𝑛 + 1)! 𝑥
A"e$ = 𝑥 +

𝑥B

3! +
𝑥I

5! −⋯
�

"=d

 

giving, as this diagram shows: 
𝑒Ø = cosh(𝑥) + sinh(𝑥) 

 
Madhava did not find infinite series expansions for just sine and cosine around 1400. He also found the 

power series for the inverse of tangent,473 officially written ‘arctan’,474 to avoid the ambiguity of ‘tan-1’, still 
widely used today, even though it is deprecated. He did so over two and half centuries before Gregory 
found this formula in 1668 or 1671, known today as ‘Gregory’s series’:475 

arctan(𝑥) = 𝑥 −
𝑥B

3 +
𝑥I

5 −
𝑥¦

7 +⋯ 

Differentiating gives: 

1 − 𝑥A + 𝑥F − 𝑥N + ⋯ =
1

1 + 𝑥A 

So, integrating this series gives us back arctan, a formula well familiar to calculus students: 

"
1

1 + 𝑡A 𝑑𝑡 =
Ø

d
arctan(𝑥) 

Having found a series expansion for arctan, by setting it to suitable angles in radians, Madhava was 
able to calculate the value of π to several decimal places. In particular, as arctan(1) = π/4, he found: 	

𝜋
4 =

1
1 −

1
3 +

1
5 −

1
7 +

1
9 −

1
11 +⋯ 

Leibniz also found this formula in 1674, “one of the most 
beautiful mathematical discoveries of the seventeenth century”.476 
Hence it was long known as ‘Leibniz’s formula for π’, not 
acknowledging Madhava and Gregory’s precedence. 

William Brouncker (c. 1620–1684), the first president of the 
Royal Society, found this amazing continued fraction for π/4, the 
reciprocal of the fraction that John Wallis (1616–1703) gave in 
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Arithmetica Infinitorum in 1656.477 
In this same work, Wallis, who introduced ∞ as a symbol for infinity in 1655, probably from the 

Roman numeral for 100 million,478 presented this infinite product for π/2, known today as the ‘Wallis 
product’:479 

𝜋
2 =

2
1 ∙
2
3 ∙
4
3 ∙
4
5 ∙
6
5 ∙
6
7 ∙ … 

This was not the first infinite product for π/2. In 1593, François Viète (1540–1603) had found another 
product, most suitably presented as the reciprocal:480 

2
𝜋 =

√2
2 ∙

Û2 + √2
2 ∙

¬2 +Û2 + √2
2 ∙ … 

This product can most simply be derived from this trigonometric identity, which presumably predates 
Euler’s product for sinθ/θ, which we look at in the next subsection: 

sin 𝜃
𝜃 =ocos

𝜃
2" =

�

"=$

cos
𝜃
2 ∙ cos

𝜃
4 ∙ cos

𝜃
8 ∙… 

Viète’s formula can be derived from this general product by setting θ =π/2, with repeated application 
of the half-angle formula 

cos
𝜃
2 =

Ü1 + cos𝜃
2  

from which we get, as a first iteration, cos 𝜋 4³ = 1
√2³ = √2

2³ . 

As far as I am aware, Viète’s formula is the first to represent π as an infinite product. However, there 
are many others, related to infinite series, which we look at in the next subection. 

Riemann zeta function and series 
We now come to the infinite series that mathematicians during the seventeenth century found to be the 
most intractable: what is the sum of the reciprocal of a sequence of powers, such as: 

:
1
𝑘A

�

c=$

= 1 +
1
4 +

1
9 +

1
16 +

1
25 +⋯+

1
𝑘A +⋯ 

Mengoli was the first to ponder this problem, in 1644481 or 1650 in Novæ quadraturæ arithmetic, but was 
unable to solve it.482 In 1655, Wallis then commented on the problem, computing its value to three 
decimal places.483 He was followed by Jakob Bernoulli, who wrote in 1689 in Tractatus de Seriebus Infinitis 
that this problem “is more difficult than one would expect … If anyone finds and communicates to us 
that which up to now has eluded our efforts, great will be our gratitude.” (difficilior est, quàm quis 
expectaverit … Si quis inventai nobisque communicet, quod industrial nostrum elusit hactenus, magnas de nobis 
gratias ferret.)484 As the Bernoullis lived in Basel, also Euler’s birthplace, it came to be known as the ‘Basel 
problem’ in the eighteenth century. 

Before looking at how Euler solved the Basel problem over half a century later and what this solution 
led to, we need to note that this power series is just a special case of this series, where m can be any 
positive integer, 

:
1
𝑘5

�

c=$

= 1 +
1
25 +

1
35 +

1
45 +

1
55 +⋯+

1
𝑘5 +⋯ 

So, when m = 1, we have the divergent harmonic series, as a special case. This series is further 
generalized when m is real, where it is sometimes called a p-series, with m becoming p, which converges if 
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p > 1. In turn, the p-series is a special case of the Riemann zeta function, 𝜁(𝑠), where s can be a complex 
number, which converges when the real part of s > 1. However, Riemann also considered the mysterious 
case when ℜ(s) ≤ 1, which is valid through analytic continuation, which we look at later in this 
subsection. 

 
Euler began his studies of the Basel problem in 1730, shortly after moving to St Petersburg to be with 

Daniel Bernoulli, at the suggestion of Johann, Daniel’s father, who had been his tutor in Basel. Following 
his first attempt to interpolate integer sequences, which was to lead to the gamma function, as we see 
later, he made an estimate of the solution to the Basel problem to six decimal places of 1.644934.485 
Apparently he was not aware that James Stirling had computed 𝜁(2) to nine places, eight of which were 
correct, in 1730.486 

Then in a paper that he presented to the St Petersburg Academy in 1735, but not published until 1740, 
he found three solutions to the Basel problem, even if they were of dubious mathematical validity at the 
time. He began with the quadrature of the circle, which led him to find “for six times the sum of this 
series to be equal to the square of the perimeter of a circle whose diameter is 1”, estimating the sum as 
1.644934066842264364. 

People were especially sceptical about Euler’s third solution—the simplest and most elegant—because 
he believed that he could apply the rules for finite polynomials to the infinite series for sine, well familiar 
to mathematicians, at the time. For instance, if we know that the roots or zeros of a cubic are -1, 0, and 1, 
we have this relationship, representing a series as a product: 

𝑥B − 𝑥 = 𝑥(𝑥A − 1) = 𝑥(𝑥 + 1)(𝑥 − 1) = (𝑥 − 1)𝑥(𝑥 + 1) 
Similarly, Euler knew that the zeroes of the sine function are nπ, where 𝑛 ∈ ℤ, which enabled him to 

form this relationship between an infinite series and an infinite product: 

sin𝑥 = 𝑥 −
𝑥B

3! +
𝑥I

5! −
𝑥¦

7! +⋯ = 𝑥 �1 −
𝑥A

𝜋A��1 −
𝑥A

(2𝜋)A� �1 −
𝑥A

(3𝜋)A��1 −
𝑥A

(4𝜋)A�… 

In the event, it was not until a century later that Weierstrass proved with his Weierstrass Factorization 
Theorem,487 also called Product Theorem,488 that Euler’s factorization is valid. So, we have this infinite 
product, to add to the infinite series, listed in classic books of formulae along with the product that Viète 
used to find a value for π/2,489 as we see on page 295: 

sin 𝑥
𝑥 =:

(−1)c

(2𝑘 + 1)! 𝑥
Ac =o�1−

𝑥A

(𝑘𝜋)A�
�

c=$

�

c=d

 

This product formula has profound implications, quite apart from its use in solving the Basel problem. 
For instance, inspired by a one-page article that Paul Levrie wrote in 2012,490 Mathologer showed in May 
2020 in one of his brilliant animated YouTube videos that the three expressions for π on page 294 follow 
directly from the product formula for sin(x).491 First, defining  

sin 𝑥 = 𝑥 G1 −
𝑥
𝜋HG1 +

𝑥
𝜋HG1 −

𝑥
2𝜋HG1 +

𝑥
2𝜋HG1−

𝑥
3𝜋HG1 +

𝑥
3𝜋H… 

and setting x = π/2, gives 

sin
𝜋
2 =

𝜋
2
J
1
2
KJ
3
2
KJ
3
4
K J
5
4
KJ
5
6
KJ
7
6
K… 

and hence,  
2
𝜋 =

1 ∙ 3 ∙ 3 ∙ 5 ∙ 5 ∙ 7 ∙ 7 ∙ 9 ∙
2 ∙ 2 ∙ 4 ∙ 4 ∙ 6 ∙ 6 ∙ 8 ∙ 8 ∙… 

which is the reciprocal of the Wallis product. 
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 To turn a product into a sum is a little trickier, involving taking logs and removing them through 
differentiation with the chain rule, like this: 

ln(sin 𝑥) = ln 𝑥 + ln G1 −
𝑥
𝜋H + ln G1 +

𝑥
𝜋H + ln G1 −

𝑥
2𝜋H + ln G1 +

𝑥
2𝜋H + ln G1 −

𝑥
3𝜋H + ln G1+

𝑥
3𝜋H +⋯ 

and 
cos 𝑥
sin 𝑥 =

1
𝑥 −

1
𝜋 − 𝑥 +

1
𝜋 + 𝑥 −

1
2𝜋 − 𝑥 +

1
2𝜋 + 𝑥 −

1
3𝜋 − 𝑥 +

1
3𝜋 + 𝑥 −⋯ 

Now setting x = π/4, gives: 
cos 𝜋4
sin𝜋4

= 1 =
1
𝜋
4
−

1
3𝜋
4
+

1
5𝜋
4
−

1
7𝜋
4
+

1
9𝜋
4
−

1
11𝜋
4

+
1
13𝜋
4

− ⋯ 

Multiplying each side by x = π/4 gives the Madhava-Gregory-Leibniz formula for π, although Euler 
attributed it to Leibniz only. In doing so, he felt confident that even though he was uncertain about the 
validity of his innovative method, it, nevertheless, gave the correct result for 𝜁(2).492 

Levrie also showed how Brouncker’s continued fraction for π could be derived from the Madhava-
Gregory-Leibniz formula, which could not have been the way that Brouncker found his expression, for he 
did so before both Gregory and Leibniz had published their results. So, he must have done so from the 
Wallis product, as Wallis apparently claimed. Either way, deriving Brouncker’s continued fraction 
involves some rather intricate manipulations, which Mathologer has brilliantly animated. 

So, how did the product formula for sine enable Euler to find the value of 𝜁(2)? Well, he saw that if he 
multiplied out the product, taking 1 from each term in the product and the second element from all the 
other terms, the resulting coefficient of x2 would be equal to the coefficient of x2 in the series. Hence: 

−
1
3! = −

1
𝜋A −

1
(2𝜋)A −

1
(3𝜋)A −

1
(4𝜋)A … 

From which we find this amazing result: 

:
1
𝑘A

�

c=$

=
1
1A +

1
2A +

1
3A +

1
4A + ⋯ =

𝜋A

6  

With this discovery, Euler became world famous, among mathematicians in Europe, at least, but still 
not known to the general public, unlike Isaac Newton, similarly having a major influence in the evolution 
of mathematics and science. Indeed, by 1733 he had already became professor of mathematics at the St 
Petersburg Academy when Daniel Bernoulli left Russia to return to Basel.493 

 
But Euler did not stop there. As a generalist, constantly seeking generative patterns within infinite 

series, Euler found the values for six terms in the sequence of the reciprocals of even powers, at least. He 
did so in ‘On the sums of series of reciprocals’, E41 in the Eneström Index, by defining two sets of 
variables, finding repetitive relationships between them. He defined P, Q, R, S, T, and V etc., which I’ll 
denote with Pk, and α, β, γ, δ, ε, and ζ etc., which can be denoted with ak. With these revised notations, 
we have, for k ≥ 1:	

𝑃c =
1

(𝜋)Ac +
1

(2𝜋)Ac +
1

(3𝜋)Ac + ⋯ 

and 

𝑎c =
1

(2𝑘 + 1)! 

With these definitions, Euler then defined Pk in terms of all preceding values of Pk from 1 to k – 1, 
thus: 
𝑃$ = 𝑎$ =

1
3!
=
1
6
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𝑃A = 𝑃$𝑎$ − 2𝑎A =
1
6
∙
1
6
−

2
120

=
1
90

 

𝑃B = 𝑃A𝑎$ − 𝑃$𝑎A + 3𝑎B =
1
90

∙
1
6
−
1
6
∙
1
120

+
3

5040
=

1
945

 

𝑃F = 𝑃B𝑎$ − 𝑃A𝑎A + 𝑃$𝑎B − 4𝑎F =
1
945

∙
1
6
−
1
90

∙
1

5040
+
1
6
∙

1
5040

−
4

362880
=

1
9450

 

𝑃I = 𝑃F𝑎$ − 𝑃B𝑎A + 𝑃A𝑎B − 𝑃$𝑎F + 5𝑎I =
1

9450
∙
1
6
−

1
945

∙
1
120

+
1
90

∙
1

5040
−
1
6
∙

1
362880

+
5

39916800
=

1
93555

 

𝑃N = 𝑃I𝑎$ − 𝑃F𝑎A + 𝑃B𝑎B − 𝑃A𝑎F + 𝑃$𝑎I − 6𝑎N =
1

93555
∙
1
6
−

1
9450

∙
1
120

+
1
945

∙
1

5040
−
1
90

∙
1

362880
+
1
6
∙

1
39916800

−
6

6227020800
=

691
638512875

 

At this point, Euler not surprisingly said, “a fair deal of work [is needed] for the higher powers,” not 
having available to him WolframAlpha or other similar tools. Nevertheless, there is a clear pattern here, 
whose underlying principles Euler came closer to finding in 1739 in a rather rambling document titled 
(E130) that extended this sequence to k = 13. This was presented more succinctly in 1748 in Chapter X of 
Volume 1 of his brilliant textbook Introduction to the Analysis of the Infinite, known simply as Introductio. 
As he said in this book, “We could continue with more of these, but we have gone far enough to see the 
sequence which at first seems quite irregular, 1, $

B
, $
B
, B
I
, I
B
, N§$
$dI

, BI
$
, …, but it is of extraordinary usefulness in 

several places.” 
Nevertheless, in 1749, in the paper in which Euler began to study what we today call the eta function 

(𝜂(𝑥))—as the alternating form of the zeta function—he tells us that he had calculated the sum of the 
reciprocals of the even powers up to 34.494 However, as he said in this paper, “in the cases where n is an 
odd number, all my effort to find their sum is a failure up to now. Nevertheless, it is certain that they do 
not depend in a similar way on the powers of the number π.” 

Yet, even though Euler was finding patterns among the even powers, I have not found in any of his 
writings that I have looked at an explicit reference to this general expression, which he supposedly 
discovered, in terms of Bernoulli numbers:495 

𝜁(2𝑘) = (−1)ce$
(2𝜋)Ac

2(2𝑘)! 𝐵Ac 

Perhaps we should not be surprised that the Bernoulli numbers pop up, for Jakob Bernoulli found 
these when studying the sums of the powers themselves, rather than their reciprocals, through a rather 
complex recurrence equation that we see on page 240. Here, then, is a table of the first thirteen even 
powers and the first ten decimal digits of their decimal expansions, the OEIS giving up recording them 
after the first ten. 

Power E41 Ch X, Introductio Bernoulli nos. Decimal OEIS 

2 𝜋A

6
 

2d

3!
∙
1
1
𝜋A 𝜋A ∙

1
6
 1.6449340668… A013661 

4 𝜋F

90
 

2A

5!
∙
1
3
𝜋F 𝜋F

3
∙
1
30

 1.0823232337… A013662 

6 𝜋N

945
 

2F

7!
∙
1
3
𝜋N 2𝜋N

45
∙
1
42

 1.0173430619… A013664 

8 𝜋S

9450
 

2N

9!
∙
3
5
𝜋S 𝜋S

315
∙
1
30

 1.0040773561… A013666 

10 𝜋$d

93555
 

2S

11!
∙
5
3
𝜋$d 2𝜋$d

14176
∙
5
66

 1.0009945751… A013668 

12 691𝜋$A

6825 ∙ 93555
=

691𝜋$A

638512875
 

2$d

13!
∙
691
105

𝜋$A 2𝜋$A

467775
∙
691
2730

 1.0002460865… A013670 

14 2
18243225

𝜋$F 2$A

15!
∙
35
1
𝜋$F 4𝜋$F

42567525
∙
7
6
 1.0000612481… A013672 

16 3617𝜋$N

325641566250
 2$F

17!
∙
3617
15

𝜋$N 𝜋$N

638512875
∙
3617
510

 1.0000152822… A013674 

18 43867	𝜋$S

38979295480125
 2$N

19!
∙
43867
21

𝜋$S 2𝜋$S

97692469875
∙
43867
798

 1.0000038172… A013676 
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Power E41 Ch X, Introductio Bernoulli nos. Decimal OEIS 

20 174611	𝜋Ad

1531329465290625
 2$S

21!
∙
122277
55

𝜋Ad 2𝜋Ad

9280784638125
∙
174611
330

 1.0000009539… A013678 

22 155366	𝜋AA

13447856940643125
 2Ad

23!
∙
854513

3
𝜋AA 4𝜋AA

2143861251406875
∙
854513
138

 1.0000002384… — 

24 236364091	𝜋AF

201919571963756521875
 2AA

25!
∙
1181820455

273
𝜋AF 2𝜋AF

147926426347074375
∙
236364091

2730
 1.0000000596… — 

26 1315862	𝜋AN

11094481976030578125
 2AF

27!
∙
76977927

1
𝜋AN 4𝜋AN

48076088562799171875
∙
8553103

6
 1.0000000149… — 

As no one since Euler has found a closed-form expression for the sums 
of the reciprocals of the odd powers of integers, we should not be 
surprised that mathematicians have been unable to find a general formula 
for the p-series of the sums of the reciprocals of the powers of the reals, 
which is 𝜁(𝑥), for x > 1. Nevertheless, we can plot this function, showing 
how rapidly the curve approaches its two asymptotes at x = 1 and y = 1. 
On page 304, we show how this chart is extended into the complex plane 
for 𝜁(𝑧), with ℜ(z) > 1, and, through analytic continuation, into both the 
Cartesian and complex planes for ℜ(z) ≤ 1, on pages 306 and 308. 

 
In 1737, Euler found yet another amazing relationship involving the zeta function with natural 

numbers as exponents, published in Variae observationes circa series infinitas (Various observations about 
infinite series) in 1744. However, he presented this relationship much more lucidly in Section 283 of 
Chapter XV of the Introductio. Beginning with 

𝜁(𝑛) = 1 +
1
2" +

1
3" +

1
4" +

1
5" +

1
6" +

1
7" +

1
8" +

1
9" + ⋯ 

form 
1
2" 𝜁

(𝑛) =
1
2" +

1
4" +

1
6" +

1
8" +⋯ 

and subtract the second series from the first, giving, as Mathologer delightfully explains with his 
animated formulae on YouTube:496 

J1 −
1
2"
K𝜁(𝑛) = 1 +

1
3" +

1
5" +

1
7" +

1
9" + ⋯ 

The result is a series in which no terms are divisible by 2. Now form  
1
3"
J1 −

1
2"
K 𝜁(𝑛) = 1 +

1
3" +

1
5" +

1
7" +

1
9" +⋯ 

and subtract again giving: 

J1 −
1
3"
KJ1 −

1
2"
K 𝜁(𝑛) = 1 +

1
5" +

1
7" +

1
11" +

1
13" +⋯ 

Now we have a series that is not divisible by 2 or 3, the first two primes. This process can be continued 
indefinitely, rather like the sieve of Eratosthenes used to separate the prime numbers from composite 
ones. If we continue Euler’s process to its ultimate conclusion, all multiples of primes are eliminated from 
the right-hand side and we are left with only 1, giving: 

𝜁(𝑛) J1 −
1
2"
KJ1−

1
3"
KJ1 −

1
5"
KJ1 −

1
7"
KJ1 −

1
11"

K… = 1 

and so 

𝜁(𝑛) =
1

G1− 1
2"HG1 −

1
3"HG1 −

1
5"H G1 −

1
7"H G1−

1
11"H…
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In other words, we have this relationship between the zeta function as both an infinite series and an 
infinite product: 

𝜁(𝑛) = :
1
𝑘"

�

c=$

=o
1

1 + 1
𝑝c"

�

c=$

 

where pk is the kth prime.  
In Prime Obsession from 2003, John Derbyshire calls this amazing relationship the ‘Golden Key’,497 

which causes mathematicians to go all a flutter. For primes are the atoms of number theory, all integers 
being uniquely expressible as the product of prime numbers—the fundamental theorem of arithmetic, as 
we see in Chapter 3. It was this formula that led Riemann in 1859 to explore the possibility that it could 
tell us something about the distribution of the primes, which have no obvious repeating pattern, as we see 
in a moment. 

What is especially amazing about this result is that there is a relationship between the prime numbers 
and π, the ratio of the circumference of a circle to its diameter, just one other example where π pops up in 
the most unexpected places. For instance, for n = 2, we have, as 3Blue1Brown brilliantly illustrates 
geometrically on one of his YouTube videos:498 

𝜁(2) = 1 +
1
2A +

1
3A +

1
4A +

1
5A +⋯ =

2A

2A + 1 ×
3A

3A + 1 ×
5A

5A + 1 ×
7A

7A + 1 ×
11A

11A + 1 × … =
𝜋A

6  

 
Before looking at how Euler’s product formula involving just the primes led to the Riemann zeta 

function, two other functions that Euler introduced are closely related to these developments. These are 
the Gamma (Γ) and eta (η) functions, which we’ll look at briefly before exploring their extensions into the 
complex domain. 

In 1959, Philip J. Davis wrote an informative essay on how the Gamma function emerged in the history 
of mathematical development, viewing mathematics as a growth process, rather than a static one,499 as this 
book is endeavouring to demonstrate, but starting from the Divine Origin of the Universe, rather than 
with some axioms or assumptions, which deny the paradoxical truth of the fundamental law of the 
Universe. 

At the time that Euler wrote his paper on the Gamma function, mathematicians were exploring how 
to use interpolation to extend formulae that are valid for natural numbers into fractional values and hence 
into real numbers. For instance, as n2 is the formula for squares, we can calculate 3½2 as 12¼. Similarly, 
we know that the nth triangular number is n(n + 1)/2, so we know that the sum of the first 3½ ‘natural’ 
numbers is 7⅞, lying between 6 and 10. 

But what is 3½! lying between 6 and 24? These are the third and fourth of what Euler called the 
hypergeometric series, for the successive terms increase faster than geometric series, where there is a 
constant ratio between terms. This is what Euler endeavoured to find in 1729, much inspired by 
correspondence with Christian Goldbach (1690–1764),500 soon after moving to St Petersburg. Here is the 
general formula that Euler discovered:501 

𝑥! = " (− ln 𝑡)Ø𝑑𝑡
$

d
 

which is valid for noninteger values. So, not only does the function give us 3! = 6 and 4! = 24, we have: 

3½! =
105√𝜋
16 ≈ 11.6317 
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Once again, we see π appearing, this time as a square root rather than as a square, this value being 
derivable from ½! = √𝜋/2. For 

3½! =
7
2 ∙
5
2 ∙
3
2 ∙
1
2√𝜋 

However, Euler’s formula is not what Adrien-Marie Legendre (1752–1833) called the Gamma function 
in 1809, with a capital Γ:502	

Γ(𝑥) = " 𝑡ØE$𝑒Ep
�

d
𝑑𝑡 

Rather, if we set u = -ln(t) in Euler’s formula, we obtain what Gauss called the Pi function: 

Π(𝑥) = " 𝑢Ø𝑒E7
�

d
𝑑𝑢 

This expression has the advantage that 
Π(𝑛) = 𝑛! 

as this is more natural, as H. M. Edwards points out in Riemann’s Zeta Function,503 whereas 
Γ(𝑛) = (𝑛 − 1)! 

So, we have: 
Γ(𝑥 + 1) = Π(𝑥) = 𝑥Γ(𝑥) = (𝑥 − 1)Π(𝑥 − 1) 

which has no zeroes, as this diagram illustrates, but poles at zero 
and negative integers. This means that the reciprocal of the Gamma 
function is an entire one over its whole domain, somewhat easier to 
deal with in analysis. 

However, the symmetry of the Pi function in the factorial doesn’t 
necessarily hold in the many other uses of the Gamma function, 
which mathematicians prefer to use today. 

There is a link between the gamma function and γ, the Euler-
Mascheroni constant, which Weierstrass discovered using what is 
called the digamma function, known as Psi (Ψ), where:504 

Ψ(𝑥) =
Γ′(𝑥)
Γ(𝑥) =

1
𝑥 − 𝛾 +

:J
1
𝑟 −

1
𝑟 + 𝑥

K
�

8=$

 

So, setting x = 1, gives this elegant result: 
Γ′(1) = −𝛾 

This identity, which Euler presented in 1755 in Foundations of Differential Calculus, Sandifer tells us,505 
gives us the geometrically pleasing result that -γ is the gradient of the gamma function at x = 1.506  

To see the link between the Gamma and zeta functions, we first need to form what is called Euler’s 
reflection formula, which he discovered, as he tells us in E352, although I don’t know in which previous 
document. A reflection formula is one that relates f(x) to f(a – x) for some constant a. Setting a = 1 in the 
reflection formula for the Gamma function gives the Complement Formula, also often called ‘Euler’s 
functional equation’:507 

Γ(𝑥)Γ(1 − 𝑥) =
𝜋

sin(𝜋𝑥) 

From which we can derive this beautiful formula, which Riemann showed has far-reaching 
consequences, although in his path-breaking paper he used Π rather than γ, in an unsymmetrical way:508 

𝜁(𝑥)Γ(𝑥) = "
𝑢ØE$

𝑒7 − 1𝑑𝑢
�

d
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In 1749, the year after Introductio was published, Euler wrote a far-reaching paper in French—the 
preferred language of Frederick the Great, his boss at the Prussian Academy of Science in Berlin—which 
was not published until 1768 and whose significance was not recognized until 1894.509 The paper was titled 
Remarques sur un beau rapport entre les series des puissances tant directes que reciproques (Remarks on a 
beautiful relation between direct as well as reciprocal power series), E352 in the Eneström Index.510 It was 
translated in 2006 by Lucas Willis, an undergraduate student in mathematics and French, and Tom 
Osler, his mathematics professor, who, they say, ‘struggled to understand this brilliant work’. Three years 
later, Osler then further explained how this paper prefigured Riemann’s functional equation for the zeta 
function.511 

Euler began his paper, not with the power series, as such, but with two alternating power series, calling 
them ‘direct’ and ‘reciprocal’, respectively: 

15 − 25 + 35 − 45 + 55 − 65 + 75 − 85 +⋯ 
1
1" −

1
2" +

1
3" −

1
4" +

1
5" −

1
6" +

1
7" −

1
8" +⋯ 

Taken together, these infinite series with integer exponents are a special case of the Dirichlet eta 
function, named after Peter Gustav Lejeune Dirichlet (1805–1859), although this eta function covering the 
complex domain is not mentioned in biographies I have browsed: 

𝜂(𝑠) =:
(−1)c

𝑘�

�

c=$

= 1 −
1
2� +

1
3� −

1
4� +

1
5� −

1
6� +⋯ 

where s is any complex number. Reverting to positive real exponents, we can find the relationship of 
the eta function to the zeta one, as Mathologer explains,512 by: 

𝜁(𝑥) − 𝜂(𝑥) =
2
2Ø +

2
4Ø +

2
6Ø +

2
8Ø +⋯ =

2
2Ø
J1 +

1
2Ø +

1
3Ø +

1
4Ø +

1
5Ø
K =

2
2Ø ∙ 𝜁

(𝑥) 
From which we find: 

𝜂(𝑥) = (1 − 2$EØ)𝜁(𝑥) 
This means that we can find 𝜂(2𝑛) corresponding to the first even powers of 𝜁(2𝑛) that Euler found in 

1736, after 𝜂(1) = ln(2) = 0.693147, the alternating harmonic series: 

Power 𝜂(2𝑛)  Decimal OEIS 

2 1
2
∙
𝜋A

6
=
𝜋A

12
 0.8224670334… A072691 

4 7
8
∙
𝜋F

90
=
7𝜋F

720
 0.9470328294… A267315 

6 31
32

∙
𝜋N

945
=
31𝜋N

30240
 0.9855510912… A275703 

8 127
128

∙
𝜋S

9450
=

127𝜋S

1209600
 0.9962330018… — 

10 511
512

∙
𝜋$d

93555
=

73𝜋$d

6842880
 0.9990395075… — 

12 2047
2048

∙
691𝜋$A

638512875
=

1414477𝜋$A

1307674368000
 0.9997576851… — 

As you can see, the plot of the eta function for x > 0 does not make a very interesting chart, converging 
rapidly to 1 from below from 𝜂(0) = ½, the Cesaro sum of Grandi’s series. However, the eta function 
could play a more important role in the complex domain, the zeta function being defined in terms of the 
eta one:  

𝜁(𝑠) =
𝜂(𝑠)

1 − 2$E� 

The important point about this relationship when it comes to extending the zeta function is that the 
eta function is convergent for ℜ(s) > 0, whereas the zeta function is only convergent for ℜ(s) > 1, with a 
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discontinuity at ℜ(s) = 1, enabling it to directly cover the entire complex plane. The continuity of the eta 
function is illustrated on the Cartesian plane on page 306. 

 
Before we look at what the Riemann zeta function looks like on the complex plane, I find it useful to 

look at the basic principles of complex functions compared with those restricted to the real domain. With 
real functions, the independent variable x varies on the number line from -∞ to +∞ to give y = f(x). So, if 
y = x2, the function depicts the familiar parabola, whose vertex is at point (0, 0). 

However, with complex functions, the real number line becomes the entire complex plane as input to 
functions. The x- and y-axes in the Cartesian x-y plane thus denote the real and imaginary components of 
complex numbers, both ranging from -∞ to +∞. The output from a complex function is then represented 
in another complex plane. So, complex functions map an ordered pair, as a 2-tuple, to another pair. 

For instance, in the case of the complex square function, a + bi 
becomes (a2 - b2) + 2abi. This is easier to understand in polar notation, 
where 𝑟𝑒<å  becomes 𝑟A𝑒A<å , where 𝑟 = √𝑎A + 𝑏A  and 𝜃 = arctan(𝑏/𝑎) . 
In other words, in this simple complex function, the argument is 

doubled and the modulus is squared. 
The right-hand diagram shows 

the way that the complex square 
function transforms individual 
points ±2 ± 1.5i and ±1.5 ± 2i, 
coloured green and orange, 
respectively, presenting the results 
on the same complex plane. 3Blue1Brown represents this 
transformation dynamically on his YouTube channel,513  graphically 
depicting how far points in the third and fourth quadrants must ‘travel’ 
to reach their destinations.  

However, to get a more complete sense of such transformations, the 
left-hand diagram shows how a grid—where the real and imaginary 
dimensions range from -2.5 to +2.5 at 0.5 intervals—maps to nested 
sets of parabolas. The blue and red ones represent the vertical and 
horizontal grid lines, where the real and imaginary components are 
constant, respectively. 

Notice that the parabolas intersect at right angles, like the lines in 
the generating grid. This is a characteristic of the transformation of complex analytic functions, which are 
angle-preserving, in what is called conformal mapping, which Zeev Nehari defined in his classic book on 
the subject in 1952. “We say that a mapping is conformal [for a regular analytic function] if it preserves the 
angle between two differentiable arcs.”514 

Denoting the entire complex plane with z = x + iy, in the mapping from the vertical lines, where the 
real component is a constant R, the equation for the blue parabolas is: 

𝑓(𝑧) = 𝑧A = (𝑅A − 𝑦A) + 2𝑦𝑅𝑖 
Similarly, when the imaginary component is a constant I, the horizontal lines are transformed into the 

red parabolas with this equation. 
𝑓(𝑧) = 𝑧A = (𝑥A − 𝐼A) + 2𝑥𝐼𝑖 
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Thus, the vertices are R2 and -I2, where y = 0 and x = 0, respectively, and the curves cross the imaginary 
axis at the points ±2C2, where C is R or I, where y = R and x = I, respectively. The complex square 
function transforms the real and imaginary axes into the positive and negative real axes, respectively, 
where C = 0, as expected. So, the familiar parabola in the Cartesian plane of real values is depicted as a 
straight line from 0 to ∞ in the complex plane. 

Treating the complex equations as parametric ones and rotating by ±π/2 gives this equation for the 
spectrum of parabolas in the more familiar Cartesian plane. 

𝑦 =
𝑥A

4𝐶A − 𝐶
A 

This basic introduction to conformal mapping illustrates how much more complicated complex 
analysis is than real analysis, requiring more advanced mathematical skills to reveal the beautiful hidden 
patterns. This is especially the case with the Riemann function in the complex domain, to which we now 
need to turn our attention. 

 
We now come to the Riemann zeta function itself, which I don’t really understand because of my 

rather limited mathematical skills and experience. Bernhard Riemann wrote his short paper in 1859 with 
the title ‘Über die Anzahl der Primzahlen unter einer gegebenen Größe’, which David R. Wilkins has 
translated as ‘On the Number of Primes Less Than a Given Magnitude’. Having had Dirichlet as one of 
his teachers,515 Riemann was inspired to take Euler’s product formula into the complex domain. For one 
of the major problems that mathematicians have long wrestled with is to find patterns in the distribution 
of the primes, the basic building blocks of the number system. 

But before briefly looking at this critical issue, here is 
a picture of the extension of the chart of the p-series on 
page 299 into the complex domain, which is a screen 
capture from one of 3Blue1Brown’s brilliant YouTube 
videos. In a similar manner in which I have shown how 
rectangular grid lines can be transformed using the 
square function in the complex plane, this beautiful 
diagram illustrates how a rectangular grid is similarly 
transformed with the zeta function, where ℜ(z) > 1. 

The curves intersecting orthogonally illustrate the 
projections from the grid lines, with the yellow and pink 
ones being the 
horizontal and 

vertical, respectively. To visualize what is happening here, I’ve 
drawn just a tiny section of the conformal mapping of two 
horizontal and vertical grid lines, at positions ℑ(z) = 0.5 and 2 and 
ℜ(z) = 1.5 and 2. The horizontal grid lines, with constant 
imaginary values, begin and end at ℜ(z) = 1.00001 and 15, and the 
vertical grid lines, with constant real values, begin and end at 
ℑ(z) = -2 and 15. They intersect orthogonally at the points in black 
marked with a diamond symbol. The start and end points are 
marked in orange and cyan, respectively. 
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What is particularly interesting is that the starting points for the horizontal grid lines begin close to 
the yellow vertical line in 3Blue1Brown’s diagram at (γ + yi), where γ is the Euler-Mascheroni constant, 
~0.577. The closer to the real axis, the closer they are to γ, a fact that no doubt emerges from the 
mathematics, for, as 3Blue1Brown says in a note, “it’s kind of fun to puzzle about why this is the case.”516 
Regarding the vertical grid lines, as the zeta function maps the sums of reciprocals of powers, the smaller 
they are, the larger the curve emanating from the starting point. Not surprising, therefore, that most of 
the complex plane converges on the red blob in the diagram of the zeta function. 

 
When ℜ(z) ≤ 1, the zeta function diverges. Nevertheless, mathematicians have devised a way in which 

such divergent series can be given a finite value through a technique call ‘analytic continuation’. Julian 
Havil provides a simple introduction to this mysterious subject with this relationship:517 

𝑓$(𝑧) = 1 + 𝑧 + 𝑧A + 𝑧A +⋯ = 𝑓A(𝑧) =
1

1 − 𝑧 

which is only valid within a circular radius of convergence where |z| < 1.518 However, because 𝑓A(𝑧) can 
be defined by a power series expansion, which is valid within a larger-than-expected radius of 
convergence, this power series can be used to define the function outside its original domain of definition. 
What is more, this extension into the entire complex domain is uniquely defined. As Eric Weisstein says 
on his Wolfram MathWorld website, “This uniqueness of analytic continuation is a rather amazing and 
extremely powerful statement. It says in effect that knowing the value of a complex function in some 
finite complex domain uniquely determines the value of the function at every other point.”519 

While analytic continuation is generally seen as a fairly modern invention, Euler effectively introduced 
this technique in E352, in which he defined the Dirichlet eta function. He began with the ‘direct’ form of 
this function, which is clearly divergent when m ≥ 0. 

15 − 25 + 35 − 45 + 55 − 65 + 75 − 85 +⋯ 
From this, he then formed a sequence of polynomials, starting with the basic geometric function with 

r = -x, with the initial value of m = 0: 

1 − 𝑥 + 𝑥A − 𝑥B + ⋯ =
1

1 + 𝑥 

He then showed that successive polynomials could be formed with the differential calculus, whose 
details Tom Osler explains. Euler multiplied this equation by x and differentiated, giving this closed-form 
expression for the generating function for the next in the sequence, when m = 1: 

1 − 2𝑥 + 3𝑥A − 4𝑥B + ⋯ =
1

(1 + 𝑥)A 

Euler then repeated this exercise of first multiplying by x and then differentiating to give, in turn: 

1 − 2A𝑥 + 3A𝑥A − 4A𝑥B + ⋯ =
1 − 𝑥
(1 + 𝑥)B  

1 − 2B𝑥 + 3B𝑥A − 4B𝑥B +⋯ =
1 − 4𝑥 + 𝑥A

(1 + 𝑥)F  

1 − 2F𝑥 + 3F𝑥A − 4F𝑥B + ⋯ =
1 − 11𝑥 + 11𝑥A − 𝑥B

(1 + 𝑥)I  

1 − 2I𝑥 + 3I𝑥A − 4I𝑥B +⋯ =
1− 26𝑥 + 66𝑥A − 26𝑥B + 𝑥F

(1 + 𝑥)N  

1 − 2N𝑥 + 3N𝑥A − 4N𝑥B + ⋯ =
1− 57𝑥 + 302𝑥A − 302𝑥B + 57𝑥F − 𝑥I

(1 + 𝑥)¦  

As you can see, these are the generating functions for the sums of the powers on page 246, with x 
replaced with -x. Euler then set x = 1 in these polynomials, extending them to include all rows in the 
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triangle of Eulerian numbers on page 234, but omitting the alternating even powers whose numerators 
sum to zero: 

1 − 2d + 3d − 4d + 5d − 6d +⋯ = 1 − 1 + 1 − 1 + 1 − 1 +⋯ =
1
2 

1 − 2$ + 3$ − 4$ + 5$ − 6$ +⋯ = 1 − 2 + 3 − 4 + 5 − 6	+	=
1
2A =

1
4 

1 − 2B + 3B − 4B + 5B − 6B +⋯ =
1 − 4 + 1

2F = −
2
16 = −

1
8 

1 − 2I + 3I − 4I + 5I − 6I +⋯ =
1 − 26 + 66 − 26 + 1

2N =
16
64 =

1
4 

1 − 2¦ + 3¦ − 4¦ + 5¦ − 6¦ +⋯ =
1 − 120 + 1191 − 2416 + 1191 − 120 + 1

2S = −
272
256 = −

17
16 

1 − 2§ + 3§ − 4§ + 5§ − 6§ + ⋯ =
1 − 502 + 14608 − 88234 + 156190 − 88234 + 14608 − 502 + 1

2$d =
6856
1024 =

31
4  

When looking at these strange results, giving finite values to divergent series, Euler said, “it is 
necessary to give to the word sum a more extended meaning. We understand the sum to be the numerical 
value, or analytical relationship which is arrived at according to principles of analysis, that generate the 
same series for which we seek the sum.” Today, such methods of totalling a divergent infinite series are 
called Abel summation, after Niels Henrik Abel (1802–1829), more powerful than all levels of Cesaro 
summations,520 which we introduced when looking at Grandi’s series on page 282. Let us now look at how 
analytical continuation can be applied to the zeta and eta functions in the complex domain. 

 
To analytically continue the zeta and eta functions, Riemann devised a functional equation, which 

links the domains where the functions are convergent and divergent. In general, a functional equation is 
an equation that refers to itself, usually with another value of the independent variable(s), perhaps along 
with other functions. So, recurrence equations in the first section of this chapter are comparatively simple 
functional equations. However, in general, they are not easy to solve, not being reducible to algebraic or 

differential equations.521 
In this regard, the eta function is somewhat easier to deal with, 

for, as this chart of just the real domain indicates, the convergent 
and divergent regions are continuous, coloured green and red, 
respectively, while there is a pole at ℜ(1) in the zeta function. 

Nevertheless, it is the following functional equation that is 
most quoted in the literature, which Riemann derived from the 
beautiful relationship between the zeta and gamma functions on 
page 301. 

𝜁(𝑠) = 2�𝜋�E$ sin G
𝜋𝑠
2 HΓ(1 − 𝑠)𝜁(1 − 𝑠) 

By some magic, the link between the negative integer values in the 
zeta function and the Bernoulli numbers then becomes extremely 
simple: 

	𝜁(−𝑛) = −
𝐵"e$
𝑛 + 1 

When the complex number has no imaginary part, the analytical 
continuation of the p-series of real numbers can be plotted in the 
Cartesian plane, as depicted here, at a quite different scale. And from 
the relationship between the eta and zeta functions, we are led to a 
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relationship between the Eulerian and Bernoulli numbers, which was not apparent before, showing the 
amazing interconnectivity between the various types of infinite series and finite sequences: 

	𝜂(1 − 𝑛) =
2" − 1
𝑛 𝐵" 

In summary, here is a table of the negative integer values of the zeta and eta functions, the latter being 
what Euler discovered. The first twenty Bernoulli numbers are given on pages 242 and 298, with the odd 
ones other than B1 being zero.  

Zeta Formula Fraction Decimal Eta Formula Fraction Decimal 

𝜁(0) -B1 −
1
2 −0.5 𝜂(0) B1 1

2 0.5 

𝜁(−1) -B2/2 −
1
12 −0.083�  𝜂(−1) 3B2/2 1

4 0.25 

𝜁(−3) -B4/4 1
120 0.0083�  𝜂(−3) 15B4/4 −

1
8 -0.125 

𝜁(−5) -B6/6 −
1
252 −0.00396825����������  𝜂(−5) 63B6/6 1

4 0.25 

𝜁(−7) -B8/8 1
240 0.00416� 𝜂(−7) 255B8/8 −

17
16 -1.0625 

𝜁(−9) -B10/10 −
1
132 −0.0075���� 𝜂(−9) 1023B10/10 31

4  7.75 

𝜁(−11) -B12/12 691
32760 0.021092796���������� 𝜂(−11) 4095B12/12 −

691
8  -86.375 

𝜁(−13) -B14/14 −
1
12 −0.083� 𝜂(−13) 16383B14/14 5461

4  1365.25 

𝜁(−15) -B16/16 3617
8160 0.443259803921568627450��������������������������� 𝜂(−15) 65535B16/16 −

929569
32  -29049.03125 

𝜁(−17) -B18/18 −
43867
14364 −3.05395433027011974380������������������������������ 𝜂(−17) 262143B18/18 3202291

4  800572.75 

𝜁(−19) -B20/20 174611
6600  26.45621���� 𝜂(−19) 1048575B20/20 −

221930581
8  -27741322.625  

The analytical continuation of 𝜁(−1) is of particular interest, for this is often presented as 

1 + 2 + 3 + 4 + 5 + 6 +⋯ = −
1
12 

with the implication that the equals sign has its conventional meaning. It is a pity that mathematicians 
have not devised an alternative symbol to denote Abel summation. For instance, Ramanujan used the 
conventional sign in the first letter he sent to G. H. Hardy in 1913, giving an over-simplified derivation of 
this apparent equality, whose context is presumably on the previous page. 

 
The Numberphile video mentioned in page 282 used a similar derivation, of great affront to pure 

mathematicians, even though physicists use this summation in string theory, with the mistaken belief that 
this could lead to the elusive theory of everything. This YouTube video was so startling that the New York 
Times published an article on 3rd February 2014 titled ‘In the End, It All Adds Up to 1/12’,522 leading to 
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much confusion among the general public, not understanding that the notion of summability can have 
other meanings than the conventional one. 

We can see further evidence of such limitations from a comment that someone made of 
3Blue1Brown’s video on the subject: “Mathematics should not be mystical, such that it becomes 
ungraspable; it should be explained and appreciated for its rigor and intuitive creativity combined.” 
3Blue1Brown replied: 

 I definitely agree with the statement ‘Mathematics should not be mystical’. It seems commonplace in outreach to use 
surprising facts to capture an audience that might not usually care about math, and insofar as this brings in more people 
who wouldn’t otherwise be looking, that might be a net positive. But I do worry that tossing out only mysteries without 
arguments might have an overall negative effect on the public perception of mathematics.523 
Yet, we can only fully appreciate the beautiful patterns in mathematics by basing our understanding on 

our mystical experiences, as I have realized during the last forty years. Furthermore, without admitting 
the Formless Absolute into our learning, mathematics does not have a sound foundation, and hence 
neither does society, as a whole. So, separating mysticism and mathematics can cause much heartache at 
these critical times we live in. 

 
Now extending the zeta function into the entire complex plane, it is not easy to visualize the way that 

the function behaves as this requires many years of practice,524 requiring four dimensions to plot the real 
and imaginary inputs and outputs from the function.525  Nevertheless, 3Blue1Brown did manage to 
present this diagram on his YouTube channel, mapping grid lines at various distances apart: 

 
While the symmetry between the convergent and divergent regions is most interesting, 

mathematicians are usually more focused on the way that the zeta function behaves in the critical strip 
between 0 + it and 1 + it. For, in addition to the trivial zeros at negative integer values, because odd 
Bernoulli numbers are zero, Riemann discovered that there are many non-trivial zeros either lying on the 
centre line of the critical strip at ½ + it, or symmetrically about this line, mirrored at the complements of 
these zeroing points.  
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Here is a plot of this mapping from the real axis to the 
sixth zero on this line at ½ + 37.586178i, beginning at 

-1.46035, which is zeta(½). The first 
six at ½ + itn are given in this table, 
where the OEIS sequences are the 
decimal expansions of the 
imaginary parts. And here are the 
nearest integers to the imaginary 

parts of the non-trivial zeros under 100 (OEIS A002410): 
14, 21, 25, 30, 33, 38, 41, 43, 48, 50, 53, 56, 59, 61, 65, 67, 70, 72, 

76, 77, 79, 83, 85, 87, 89, 92, 95, 96, 99  
Now there is a great puzzle here. Starting with Euler’s product formula, relating the primes to the zeta 

function as an infinite series, Riemann thought that there is a relationship between the distribution of the 
non-trivial zeros and the prime-counting function, giving the number of primes less than or equal to n,526 
which Edmund Landau (1877–1938) denoted with π(n) in 1909, nothing to do with π as a constant. As 
John Derbyshire wrote in Prime Obsession, “I am sorry about this; it is not my fault; the notation is 
perfectly standard; you’ll just have to put up with it.”527 

Despite the fact that there appears to be little regularity among the distribution of the primes, since 
Riemann mathematicians have created the Prime Number Theorem (PNT), formalizing the intuitive 
idea that primes become less common as they become larger by precisely quantifying the rate at which 
this occurs. As a first approximation, Gauss and Legendre conjectured at the end of the eighteenth 
century that:528 

𝜋(𝑛) ≈
𝑛
ln𝑛 

So, the Prime Number Theorem initially states: 

lim
"→�

𝜋(𝑛)
𝑛/ ln 𝑛 = 1 

One consequence of the PNT is that if a random integer is selected in the range of zero to some large 
integer n, the probability that the selected integer is prime is about 1/ln(n).529 

However, how is the distribution of the non-trivial zeros in the Riemann zeta function related to π(n) 
and the PNT? Browsing through lists of thousands of non-trivial zeros on the Web, these have a quite 
different distribution pattern from the primes, themselves. After the first few, from the first at about 14, 
the differences between the non-trivial zeros are sometimes even less than one. 

So, why is the Riemann Hypothesis—called the ‘greatest unsolved problem in mathematics’—so 
important? Riemann conjectured that all non-trivial zero points lie on the critical line, ½ + it, but was 
unable to prove it, saying, “Certainly one would wish for a stricter proof here; I have meanwhile 
temporarily put aside the search for this after some fleeting futile attempts, as it appears unnecessary for 
the next objective of my investigation.” 530  If proving the Riemann Hypothesis was unnecessary to 
investigate the prime-counting function, what is all the fuss about? 

Well, Riemann’s conjecture has played a central role in the development of mathematics since the 
beginning of the last century. In particular, David Hilbert included the Riemann Hypothesis as the 
eighth unsolved problem in his 1900 presentation in Paris, including Goldbach’s conjecture that every 
even number is the sum of two primes.531 And in May 2000, at the Collège de France in Paris, the Clay 
Mathematics Institute of Cambridge, Massachusetts (CMI) established seven Millennium Prize 

n tn OEIS 
1 14.134725 A058303 
2 21.022040 A065434 
3 25.010858 A065452 
4 30.424876 A065453 
5 32.935062 A192492 
6 37.586178 A305741 
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Problems, including the Riemann Hypothesis, with $1 million allocated to the solution of each 
problem.532 

Back in 1900, it was known that all zero points would fall in the critical strip between 0 + it and 
1 + it.533 Then in 1914, G. H. Hardy proved that there are an infinite number of zeros on the critical line 
at ½ + it.534 But he did not prove that there are none outside the line and no one has done so since. 
However, in 1973, Hugh L. Montgomery—noting that the zero points line up in relatively uniform 
intervals, far more regularly than the primes themselves—found that the differences between the zeros 
seem to have a distribution given by this formula:535 

1 − J
𝑠𝑖𝑛𝜋𝑢
𝜋𝑢 K

A

 
Now the year before, Montgomery had met Freeman Dyson by chance at the Princeton Institute of 

Advanced Studies, the latter pointing out that Montgomery’s pair correlation conjecture has the same 
form as the distribution function of the energy levels of subatomic particles.536  This really got the 
mathematicians excited, for this similarity seems to indicate a link between the distribution of the prime 
numbers and quantum physics.  

Then in 1996, Alain Connes pointed out another surprising relationship: between his non-
commutative geometry, for which he was awarded the Field’s Prize, and the Riemann function. This 
connection opened up a quite new approach to proving the Riemann hypothesis, leading some to 
speculate that non-commutative geometry could form the basis for the discovery of the fundamental law 
of nature, one that could explain the creation of the universe. As the commentator on a television 
programme on the Riemann Hypothesis, which Montgomery produced in 2011, enthusiastically pro-
claimed, as the new geometry is closely related to prime numbers, if the secrets of the primes are clarified 
using non-commutative geometry, then the theory of everything would be solved. The century-long 
search for the hidden meaning behind the prime numbers could well turn out to be the theory of 
everything, the Creator’s blueprint for the Universe.537 Not all mathematicians share this enthusiasm. An 
anonymous mathematician who doesn’t has said, “What Connes has done, basically, is to take an 
intractable problem and replace it with a different problem that is equally intractable.”538  

Needless to say, if you have kindly read this far, the human longing to solve the ultimate problem of 
human learning cannot be resolved within axiomatic, linear mathematics. In my experience, Life can only 
heal our fragmented, deluded minds by starting afresh at the very beginning, taking the abstractions of 
pure mathematics, which we explore in the next chapter, to their ultimate level of generality. 

From this perspective of Wholeness, confirming the truth of the Riemann Hypothesis with 
conventional mathematical reasoning is utterly irrelevant. Besides, in 1931, Kurt Gödel proved that there 
are true theorems in mathematics that cannot be proved to be true with axiomatic, deductive reasoning. 
Maybe the Riemann Hypothesis is one of them. So, as evolution carries us all into the sixth mass 
extinction of the species on Earth, self-inquiry must now be our top priority. 

Spatial dimensions 
While Integral Relational Logic shows that the Universe consists of an infinite number of dimensions, as 
domains of both quantitative and qualitative values, used in measuring, it is of particular interest to look 
at just the spatial dimensions, even though these are difficult to visualize. As Coxeter pointed out in 
Regular Polytopes, viewing the fourth Euclidean dimension as time, as Minkowski did in Einstein’s special 
theory of relativity, has little to do with how geometers view spatial dimensions.539 So, these spatial 
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dimensions are not limited by those envisaged by string theorists in physics: ten, eleven, twenty-six, or 
more? 

As I have a rather limited spatial intelligence, I mention just three aspects of the way spatial 
dimensions expand in this section: 

• regular convex polytopes, generated from figurate sequences 
• associatopes and permutatopes, generated from the Catalan sequence and factorials, respectively 
• and hyperspheres, with a very weird property, which I feel moved to mention to conclude this 

chapter. 
What these show is that the similar patterns that keep appearing in various branches of mathematics 

and in different classes of sequences can sometimes be seen as an interconnected whole in 
multidimensional spatial structures, reflecting the interconnectedness of the Cosmic Psyche, as a whole. 
It’s a pity that it is so difficult to visualize even four-dimensional structures, never mind higher 
dimensions, meaning that it is necessary to turn to the abstractions of Integral Relational Logic to find 
Peace by healing the fragmented mind in Wholeness. 

Regular convex polytopes 
In Regular Polytopes, Coxeter defines polytope as the general term for the sequence point, segment, polygon, 
polyhedron, etc. More formally, a polytope is “a finite convex region of n-dimensional space enclosed by a 
finite number of hyperplanes”,540 whose essential characteristic is that it is flat, as an extension of a plane 
in two dimensions. 

Reinhold Hoppe (1816–1900) coined the word polytope in German in 1882 from Greek poly- ‘many’ and 
topos ‘place, region, space’.541 Alicia Boole Stott (1860–1940), the third of George Boole’s five talented 
daughters, introduced the word into English in 1900 542 after meeting Pieter Hendrik Schoute (1846–
1923), a leading geometer at the University of Groningen in the Netherlands. 

To illustrate the way that polytopes grow in spatial 
dimensions, I use the nomenclature in this table, a slight 
modification of one in Wikipedia. For ‘k-face’ as a generic 
for elements in a polytope seems misleading to me. I would 
therefore suggest ‘k-unit’, for unit can mean both ‘part’ and 
‘whole’, like Arthur Koestler’s notion of holon. Norman 
Johnson, who we met on page 218 in association with 
associatopes, coined polychoron from Greek poly- ‘many’ and 
khoros ‘room, space, place, region’, to denote a 4-dimensional 
polytope. 543  In terms of non-geometric abstractions, it is sometimes also convenient to refer to a 
dimension of -1, to denote a null polytope, like an empty set.544 

Regarding the history of the subject, Julian Lowell Coolidge (1873–1954) wrote in A History of 
Geometrical Methods in 1940, “The first vague outlines of the idea of higher spaces are blurred in the mists 
of time.”545 He surmised that François Viète (1540–1603), who introduced the first systematic algebraic 
notation in his book In artem analyticam isagoge (Introduction to the analytic art) in 1591, had considered 
four or more dimensions of space.546 For relating the algebraic symbols that he introduced to geometric 
objects, Viète could see that, if they were to maintain their homogeneity, they would be associated with 
planar, solid, sursolid, etc. numbers. However, although algebra was becoming generalized through the 

Dimension of element Term (in an n-polytope) 
0 Vertex or point 
1 Edge, side, or segment 
2 Face or polygon 
3 Cell or polyhedron 
⋮	 ⋮ 
k k-unit 
⋮ ⋮ 
n − 3 Peak – (n − 3)-unit 
n − 2 Ridge – (n − 2)-unit 
n − 1 Facet – (n − 1)-unit 
n The polytope itself 
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works of Viète and Descartes, in particular, “the metaphysical implications apparently involved in the 
assumption of more than three dimensions appeared formidable.”547 

In the event, it was not until the middle of the 1800s that a great surge occurred in mathematical 
abstractions across several fronts and these metaphysical inhibitions could be overcome. As mentioned in 
Chapter 3, further explored in the next chapter, Alfred North Whitehead wrote an overview of some of 
these nineteenth-century developments in A Treatise on Universal Algebra in 1898, referring, in particular, 
to Hamilton’s Quaternions, Grassmann’s Calculus of Extension, and Boole’s Symbolic Logic. 

In the context of this subsection on regular convex polytopes, the most significant figure was Ludwig 
Schläfli (1814–1895), who, between 1850 and 1852, discovered such polytopes in four and more dimensions, 
calling them polyschemes.548 He did so by extending Euclid’s proof that there are just five regular 
polyhedra.549 For the maximum number of triangles, squares, and pentagons that can meet at a point  
with a solid angle is five, three, and three, giving rise to the tetrahedron, octahedron, icosahedron, cube, 
and dodecahedron, respectively. 

To help his investigations, Schläfli devised a coding system for these constructs, first denoting 
polygons with n sides as {n}. Extending this notation into three dimensions, {p, q} denotes q polygons 
with p sides meeting at a vertex. The letter q also denotes the vertex figure of the polyhedron, as a 
polygon, in this instance, formed by joining the midpoints of the edges meeting at a vertex. 

Recursively extending this notation into higher dimensions, {p, q, r} first denotes four-dimensional 
regular polytopes, with polyhedra {p, q} meeting at a vertex, with vertex figures {q, r}. For these to be 
regular polychora, they also need to satisfy this relationship:550 

sin
𝜋
𝑝 sin

𝜋
𝑟 ≥ cos

𝜋
𝑞 

Schläfli discovered that there are six polychora satisfying these conditions, five being extensions of the 
Platonic solids, with one extra, which only exists in four dimensions, which John Conway calls the 
octaplex and Johnson the icositetrachoron. They have proposed several other names, including the n-cell, to 
denote the number of facets in each.551 Charles Howard Hinton (1853–1907), Alicia Boole Stott’s brother-
in-law, coined tessaract in 1888,552 from Greek téssereis aktines ‘four rays’, changing this to tesseract in 
1904.553 This table lists these regular convex polychora, with some of their names. 

Polytope Schläfli symbol Cells meeting at vertex/edge Vertex figure C F E V 
5-cell, pentachoron  {3, 3, 3} Tetrahedron, 4/3 Tetrahedron 5 10 10 5 
16-cell, 4-orthoplex {3, 3, 4} Tetrahedron, 8/4 Octahedron 16 32 24 8 
8-cell, tesseract {4, 3, 3} Cube, 4/3 Tetrahedron 8 24 32 16 
24-cell, octaplex {3, 4, 3} Octahedron, 6/3 Cube 24 96 96 24 
600-cell, hexacosichoron {3, 3, 5} Tetrahedron, 20/5 Icosahedron 600 1200 720 120 
120-cell, dodecacontachoron {5, 3, 3} Dodecahedron, 4/3 Tetrahedron 120 720 1200 600 

It might seem that all these polyhedra could be extended into higher dimensions, with an increasing 
number of constructs possible. However, icosahedral/dodecahedral symmetry does not extend beyond 
four dimensions. By examining the angle criteria for building polyhedra in five or more dimensions, 
Schläfli discovered that only three are possible, which Coxeter labelled 𝛼", 𝛽", and 𝛾":	 {3, 3, …, 3, 3}, 
{3, 3, …, 3, 4}, and {4, 3, …, 3, 3}, where the ellipses denote n-5 3s. The first of these are self-duals, 
while the other two are duals of each other. Even though there are four and ten non-convex regular 
polytopes in three and four dimensions, there are none in five and above. 
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After Schläfli had written a treatise on his innovative discoveries, titled Theorie der vielfachen 
Kontinuität (Theory of Multiple Continuity), he attempted to get it published with the Austrian 
Academy of Sciences and the Berlin Academy of Science, saying, this is “an attempt to found and to 
develop a new branch of analysis that would, as it were, be a geometry of n dimensions”. However, both 
turned it down, asserting that it was ‘too long’.554 Schläfli did manage to get a portion published in French 
in 1855,555 and Arthur Cayley (1821–1895), who corresponded regularly with Schläfli, published a fragment 
in English in 1858,556 with the title ‘On the multiple integral ∫ndx dy … dz’, hardly announcing a major 
new mathematical discovery.557 

In the event, Schläfli’s seminal treatise was not published until 1901 in Switzerland,558 six years after his 
death. When reviewing this book in 1904, Schoute wrote in the Dutch mathematical journal Nieuw 
Archief voor de Wiskunde,559 “This treatise surpasses in scientific value a good portion of everything that has 
been published up to the present day in the field of multidimensional geometry. The author experienced 
the sad misfortune of those who are ahead of their time.”560 Coxeter expressed a similar sentiment, 
likening Schläfli’s publications to the art of van Gogh.561 

In the meantime, W. Irving Stringham (1847–1909) in the USA rediscovered the higher dimensional 
polytopes in 1880 in his 16-page Ph.D. thesis, titled ‘Regular Figures in n-dimensional Space’,562 being 
advised by James Joseph Sylvester. As a consequence, many people believed that Stringham, who 
incidentally introduced ln(x) to denote the natural logarithm, 563  was the discoverer of the regular 
polytopes. He was followed by several other mathematicians, including Hoppe and Thorold Gosset 
(1869–1962), who rediscovered the Schläfli symbol.564  

But perhaps the most remarkable figure in this story was Alicia Boole Stott. Inspired by Hinton, who 
had married her oldest sister Mary Ellen, she intuitively discovered the six polychora through visualiza-
tion between 1880 and 1895, making polyhedral cardboard models of their cross sections. She worked 
alone, knowing nothing of the work of Schläfli and Stringham, until 1895, when her husband Walter, an 
actuary, suggested that she contact Schoute in the Netherlands. He was astounded by photographs of the 
models she sent him, for her model of the 600-cell was essentially identical to a drawing he had made of 
the same cross section:565 

 
Alicia made her discoveries by synthetic means, in contrast to the analytical methods of professional 

geometers. As Coxeter said, “Only one or two people have ever attained the ability to visualize hyper-
solids as simply and naturally as we ordinary mortals visualize solids.”566 Five years after their first 
meeting, Schoute arranged for Alicia’s discoveries to be published.567 After this Alicia and Schoute 
collaborated with their complementary skills for the next twenty years, until his death. In 1930, her 
distinguished nephew G. I. Taylor introduced her to Coxeter, when he was a graduate student, leading 
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him to collaborate with ‘Aunt Alice’ until her death. He wrote of her, “The strength and simplicity of her 
character combined with the diversity of her interests to make her an inspiring friend.”568 

One other figure deserves a mention. To help people visualize polytopes in four 
dimensions, Victor Schlegel (1843–1905) devised a method in 1883 for projecting a polytope 
from ℝd to ℝd-1 from a point just outside one of its facets.569 Referring to polyhedra, Donald 
Summerville said, “It is always possible by suitable choice of the centre of projection to make 
the projection of one face completely contain the projections of all the other faces.”570 Here 
are Schlegel diagrams in the plane for the three regular polyhedra that can be extended into 
multiple dimensions: the tetrahedron, cube and octahedron.571 The face that is omitted from 
these diagrams is the entire space around them. 

Regarding polychora, the Schlegel figures are best created as wire models in three 
dimensions, which we could hold in our hand, depicting the vertices and edges, such as these for the 24-, 
600-, and 120-cell polychora, further projected into two dimensions. 

   

These figures have been uploaded to Wikipedia, created in Robert Webb’s brilliant Stella software,572 
originally made possible by a generalized algorithm that Zvi Har’El devised in 1993 for calculating the 
metrics of all the uniform polyhedra.573 As I outline in The Theory of Everything, this algorithm represents 
the culmination of the stuttering development of mathematicians’ understanding of even three-
dimensional polytopes since Euclid around 300 BCE and Kepler in 1619. As I’m primarily interested in this 
book in the way that mathematical structures grow indefinitely from zero to the infinity of infinities and 
hence to Transfinity, as the Absolute, I include the Schlegel figures for the three polychora that can be 
extended beyond four dimensions when we look at them in a little more detail. 

In the meantime, it is pertinent to note that Schlegel’s projective method can be seen as a metaphor for 
his relationship with the mainstream mathematical community of his day. For he appears to have been 
something of an outsider, questioning the scientific methods on which mathematics is based.574 It is 
perhaps not surprising that he was an advocate for Hermann Grassmann’s Calculus of Extension in which 
Grassmann sought to establish a sound foundation for mathematics based on a general theory of forms, as 
I outline in Chapter 3 of this book. Although Grassmann’s endeavours were many years ahead of their 
time, never being fully understood, they have today reached fulfilment in ‘Integral Relational Logic, as 
this book demonstrates. For if we regard the space around a Schlegel figure as Consciousness, by standing 
outside ourselves with Self-reflective Intelligence, we can visualize the Totality of Existence resident in 
the Cosmic Psyche as a coherent whole. 

 
One further topic before we look at the way that the three regular convex polytopes grow without limit 
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from tiny seeds. In 1850 and 1851, Euler wrote two papers in which he developed his famous polyhedral 
formula for convex polyhedra: V – E + F = 2,575 which Ed Sandifer outlined in his ‘How Euler Did It’ 
columns in June and July 2004.576 These are regarded as topology papers, as an extension of Euler’s 
famous paper in 1736 on the bridges of Königsburg,577 which led to mathematical graph theory. 

As graphs in mathematics are ubiquitous, not just restricted to topology, we can use this structure to 
demonstrate the interconnectedness of all beings, showing that none of us is ever separate from any other 
being for an instant, including the Supreme Being. However, in this section we are just concerned with 
the basic topological properties of graphs. 

However, Euler’s formula does not necessarily hold for the regular non-convex polyhedra or for three-
dimensional solids with holes in them, like tori. To generalize the polyhedral formula to accommodate 
such structures, mathematicians talk about density578 or genus,579 which are 2 or 0 for convex polyhedra, 
regular or not. Then, the Euler polygonal formula becomes the Euler-Poincaré characteristic, denoted 
with lower-case chi χ, as a topological invariant. For Henri Poincaré (1854–1912) sought what Leibniz 
called Analysis Situs, a multi-dimensional geometry of position, today called algebraic topology, giving his 
seminal paper on the subject in 1895 this title.580 

What is especially interesting here is that Poincaré, often described as the ‘last universalist’ in 
mathematics, had an unusually high level of self-awareness about his creative processes, albeit within a 
materialistic worldview, which he described in a famous lecture before the Société de Psychologie in Paris 
in 1908 entitled ‘Mathematical Invention’.581 This was further expounded in three books Science and 
Hypothesis, The Value of Science, and Science and Method, collectively published in 1913 in English 
translation as Foundations of Science.582 It was these that inspired Jacques Hadamard to write his book The 
Psychology of Invention in the Mathematical Field in 1945, for which Einstein wrote an enlightening letter 
about his own creativity, quoted in the Prologue to this book,583 which, in turn, has inspired me to 
develop a comprehensive model of the psychodynamics of society in the context of evolution, as a whole. 

However, algebraic topology is a topic about which I know very little and which takes us too far from 
the primary purpose of this section. What I am more interested in here is the way in which Schläfli, 
Stringham, and others took the polyhedral formula into the higher dimensions of convex polytopes. If we 
consider Nk to be the kth element of an n-dimensional polytope, where N0, N1, and N2 denote the vertices, 
edges, and faces, respectively, while Nn is the polytope itself, as 1, then we have this general formula:584 

:(−1)c𝑁c

"

c=d

= 𝑁d −𝑁$ + 𝑁A −⋯∓𝑁"E$ ± 𝑁" = 1 

Poincaré pointed out that this formula assumes that all the elements of the polytopes are simply 
connected.585 If not, a more complicated formula is required, which he developed in Analysis Situs and its 
first supplement. Keeping things as simple as possible, if we omit Nn, we obtain a sequence of Euler 
characteristics for the n-dimensional convex polytopes, which Coxeter denotes with Π", alternatively 
numbered 2 and 0:586 
Π$:	𝑁d = 2   
ΠA:	𝑁d − 𝑁$ = 0   
ΠB: 𝑁d − 𝑁$ + 𝑁A = 2   
ΠF: 𝑁d − 𝑁$ + 𝑁A − 𝑁B = 0   
Π": 𝑁d − 𝑁$ + 𝑁A − 𝑁B + ⋯(−1)"E$𝑁"E$ = 1 − (−1)" 
What this means is that if we have a generating function that generates a triangle of positive integers 

with these relationships, they can be visualized as multidimensional polytopes, of which I outline five 
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examples in this section, as special cases of the generative nature of mathematics and hence the Cosmic 
Psyche, which contains all these structures. 

 
To generate the sequence of simplexes, the initial seed is a point, ‘that which has no part’, the first 

definition in Euclid’s Elements.587  This is the basic polytope Πd  with zero dimensions, in Coxeter’s 
notation. Then, at each iteration, a new point is added that is connected to all previous points, giving 
n + 1 in a Π". Thus, as edges, faces, and polyhedra connect two, three, and four points, and so on, the 
general formula for the number of k-units in an n-dimensional simplex is:588 

𝑆(𝑛, 𝑘) = J
𝑛 + 1
𝑘 + 1

K = 𝑆(𝑛 − 1, 𝑘) + 𝑆(𝑛 − 1, 𝑘 − 1)							𝑘 ≤ 𝑛 

Topologically, this generative process is most clearly illustrated as coloured variations of Coxeter’s own 
diagrams: 

     
α0	 α1 α2 α3 α4 

The last of these is the Petrie polygon for the 5-simplex, named after 
Coxeter’s friend John Flinders Petrie (1907–1972), who introduced a 
general orthogonal projection with which to view polytopes.589  The 
Schlegel figure for the 5-cell or 4-simplex is depicted here.590 

Constructing the simplexes in this generative manner shows that the 
sequence of numbers that denote the vertices is simply the natural 
numbers, as the following table illustrates. The next columns are thus 
the triangular, tetrahedral, and pentachoral, etc. sequences, as we see on 
page 189. The final column is the total number of elements in each 

simplex, given by: 2n+1 – 1 (OEIS A000225), the Mersenne numbers, recursively defined on page 250, as 
an example of Lucas sequences. 

n\Nk N0 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10 Σ 
0 1           1 
1 2 1          3 
2 3 3 1         7 
3 4 6 4 1        15 
4 5 10 10 5 1       31 
5 6 15 20 15 6 1      63 
6 7 21 35 35 21 7 1     127 
7 8 28 56 70 56 28 8 1    255 
8 9 36 84 126 126 84 36 9 1   511 
9 10 45 120 210 252 210 120 45 10 1  1023 

10 11 55 165 330 462 462 330 165 55 11 1 2047 
Number of k-units in each n-simplex 
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The count of elements in simplexes is thus Pascal’s triangle without its left-hand edge, A135278 in the 
OEIS, which gives this generating function: 

1
(1 − 𝑥)(1 − 𝑥 − 𝑡𝑥) = 1 + (2 + 𝑡)𝑥 + (3 + 3𝑡 + 𝑡A)𝑥A + (4 + 6𝑡 + 4𝑡A + 𝑡B)𝑥B +⋯ 

The coefficients of the t-polynomials, as the coefficients of xn, give the number of k-units in each n-
simplex, as the rows in the triangle. The generating functions for the individual columns, as the sequences 
of elements in each k-dimension, denoted by the placeholder t, are, as given on page 245:  

1
(1 − 𝑥)peA

= 1+ (2 + 𝑡)𝑥 +
1
2
(6 + 5𝑡 + 𝑡A)𝑥A +

1
6
(24 + 26𝑡 + 9𝑡A + 𝑡B)𝑥B +

1
24
(120 + 154𝑡 + 71𝑡A + 	14𝑡B + 𝑡F)𝑥F +⋯ 

This is the expansion that Wolfram Alpha gives, different from the generating function in the OEIS, 
which covers the triangle, as whole, taking note that the sequences in the columns have different offsets. 
We can reconcile these differences by rewriting the OEIS generating function as a polynomial in t: 

1
(1 − 𝑥)A +

𝑥
(1 − 𝑥)B 𝑡 +

𝑥A

(1 − 𝑥)F 𝑡
A +

𝑥B

(1 − 𝑥)I 𝑡
B +⋯ 

As the number of edges, faces, and cells etc. are the same as the number of facets, ridges, and peaks, 
etc. respectively, the n-simplexes are self-dual. 

 
Cross polytopes are so named because they extend the cross of the orthogonal axes in the Cartesian 

plane into higher dimensions. Starting with a single axis, pairs of points are placed equidistantly from the 
origin O as each orthogonal axis is added. So, unlike the other four polytopes outlined in this section, the 
initial seed from which the orthoplexes are generated is not a point, but a pair of points connected by an 
implicit segment, made explicit in the next step. β2 is then formed by adding an explicit segment 
connecting two points, which are connected to the first two points to form the sides of a square. After 
this, unconnected pairs of points are added at each step in the sequence and connected to all previous 
points. The square in β2 thus becomes the common base for a dipyramid or octahedron, which, in turn 
provides the base for a four-dimensional dipyramid or 4-orthoplex and so on. Here are coloured versions 
of Coxeter’s diagrams illustrating this generative process.591 

    
β1 β2 β3 β4 

The last of these is a Petrie polygon, which is displayed in this Schlegel 
figure in three dimensions projected into two.592 

As the sequence of orthoplexes is formed by adding two points at a time, 
Π0 is not defined for the orthoplexes, and the base sequence for X(n, 0), from 
which the X(n, k) are generated in each n-orthoplex, is twice the natural 
numbers, or the number of vertices in each simplex:  

𝑋(𝑛, 0) = 2𝑆(𝑛, 0) = 2𝑛 
After this, “since βn is a dipyramid based on βn-1, all its elements are either 
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elements of βn-1 or pyramids based on such elements. Thus, all are simplexes,” as Coxeter defines this 
growth process, giving this recurrence equation: 

𝑋(𝑛, 𝑘) = 𝑋(𝑛 − 1, 𝑘) + 2𝑋(𝑛 − 1, 𝑘 − 1)							𝑛 > 𝑘 ≥ 1 
The number of k-units in an n-orthoplex or n-dimensional cross polytope is thus, provable by 

induction: 
𝑋(𝑛, 𝑘) = 2ce$ G

𝑛
𝑘 + 1H 									𝑛 > 𝑘 ≥ 1 

Here then is the table of k-units in each n-orthoplex from n = 1 to 10. I have added the implicit values 
for X(n, n) to ensure that Euler’s generalized polytopic formula holds. The total number of elements in 
each n-orthoplex is then 3n, the same as for the hypercubes. 

n\Nk N0 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10	 Σ 
0 (1)           1 
1 2 (1)          3 
2 4 4 (1)         9 
3 6 12 8 (1)        27 
4 8 24 32 16 (1)       81 
5 10 40 80 80 32 (1)      243 
6 12 60 160 240 192 64 (1)     729 
7 14 84 280 560 672 448 128 (1)    2187 
8 16 112 448 1,120 1,792 1,792 1,024 256 (1)   6561 
9 18 144 672 2,016 4,032 5,376 4,608 2,304 512 (1)  19683 

10 20 180 960 3,360 8,064 13,440 15,360 11,520 5,120 1,024 (1) 59049 
Number of k-units in each n-orthoplex 

This triangle is A276985 in the OEIS, which does not give a closed-form expression for this 
generating function: 

2𝑥 + (4 + 4𝑡)𝑥A + (6 + 12𝑡 + 8𝑡A)𝑥B + (8 + 24𝑡 + 32𝑡A + 16𝑡B)𝑥F + ⋯ 
Nevertheless, the generating functions for the columns, giving the sequences of elements in each k-

dimension, do have closed-form expressions, giving this generating function in terms of t: 
2𝑥

(1 − 𝑥)A +
4𝑥A

(1 − 𝑥)B 𝑡 +
8𝑥A

(1 − 𝑥)F 𝑡
A +

16𝑥B

(1 − 𝑥)I 𝑡
B +

32𝑥F

(1 − 𝑥)N 𝑡
F + ⋯ 

The OEIS gives A130809, A130810, and A130811 as the sequences for the coefficients of t2, t3, and 
t4, respectively, with offsets that match the triangle. However, A005843 and A046092, corresponding to 
the first two coefficients in the t-polynomial, have offsets of 0, rather than 1 and 2, respectively. 

As the number of edges, faces, and cells etc. in the orthoplexes are the same as the number of facets, 
ridges, and peaks etc. in the hypercubes, and vice versa, these polytopes are duals of each other. 

 
Coxeter calls the hypercubes measure polytopes because each one in the sequence acts as a unit with 

which the content of k-space can be measured. For instance, a square and cube, with sides or edges of 
length one, measure area and volume, respectively. In other words, hypercubes are honeycombs, 
tessellating multidimensional space, so named because the hexagons that form bee’s honeycombs also fill 
the plane. In turn, hexagons initiate another sequence of polytopes that fill k-space, as we see in the 
permutatopes, outlined on page 328. 

To provide a unit with which to measure k-space, the polytope at each step is formed by duplicating 
the previous step and by connecting the corresponding vertices, illustrated in these coloured variations of 
Coxeter’s own diagrams.593 
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γ0 γ1 γ2 γ3 γ4 
As before, the last of these is a Petrie polygon, which is displayed in 

this Schlegel figure in three dimensions projected into two.594 
As the sequence of hypercubes is formed by doubling the number of 

vertices each time, the base sequence for M(n, 0), from which the M(n, k) 
are generated in each n-dimensional measure polytope is powers of 2 
(OEIS A000079):  

𝑀(𝑛, 0) = 2" 
The recurrence equation that then generates the number of k-units in 

each n-hypercube is: 
𝑀(𝑛, 𝑘) = 2𝑀(𝑛 − 1, 𝑘) +𝑀(𝑛 − 1, 𝑘 − 1)							𝑛 ≥ 𝑘 ≥ 0 

It is then quite easy to prove by induction that the number of k-units in an n-dimensional measure 
polytope (hypercube) is:595 

𝑀(𝑛, 𝑘) = 2"Ec G
𝑛
𝑘H 

Here then is the table of k-units in each n-hypercube from n = 0 to 10. The total number of elements 
in each measure polytope is then 3n, the same as for the cross polytopes. 

n\Nk N0 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10 Σ 
0 1           1 
1 2 1          3 
2 4 4 1         9 
3 8 12 6 1        27 
4 16 32 24 8 1       81 
5 32 80 80 40 10 1      243 
6 64 192 240 160 60 12 1     729 
7 128 448 672 560 280 84 14 1    2187 
8 256 1,024 1,792 1,792 1,120 448 112 16 1   6561 
9 512 2,304 4,608 5,376 4,032 2,016 672 144 18 1  19683 

10 1,024 5,120 11,520 15,360 13,440 8,064 3,360 960 180 20 1 59049 
Number of k-units in each n-hypercube 

This triangle is A038207 in the OEIS, which gives this closed-form expression for the generating 
function that generates the entries in the table: 

1
1 − 2𝑥 − 𝑡𝑥 = 1 + (2 + 𝑡)𝑥 + (2 + 𝑡)A𝑥A + (2 + 𝑡)B𝑥B + (2 + 𝑡)F𝑥F +⋯ 

Taking account of the correct offsets, the generating functions for the columns, giving the sequences of 
elements in each k-dimension, have this generating function in terms of t: 
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1

(1 − 2𝑥) +
𝑥

(1 − 2𝑥)A 𝑡 +
𝑥A

(1 − 2𝑥)B 𝑡
A +

𝑥B

(1 − 2𝑥)F 𝑡
B +

𝑥F

(1 − 2𝑥)I 𝑡
F +⋯ 

The coefficients in this t-polynomial expand into the sequences A000079, A001787, A001788, 
A001789, and A003472, not necessarily with the same offsets as those in the table. 

Associatopes and permutatopes 
Just as simplexes and hypercubes extend triangles and squares into higher dimensions of space, 
associatopes and permutatopes extend pentagons596 and hexagons.597 They are not regular polytopes. 
However, they do have the common property that each vertex is connected to the same number of 
vertices, marking, in these cases, binary transpositions of associations and permutations. These are central 
concepts in group theory, which we turn to in the next chapter, as we move ever closer to the abstractions 
of Integral Relational Logic. 

I mentioned on page 218 that Mark Haiman coined associahedron in 1984, deriving the word from 
association, first used in English about 1535 to mean ‘action of coming together for a common purpose’, 
from Latin associāre ‘to join with’, from ad- ‘to’ and sociāre ‘unite, combine’, from socius ‘sharing, allied; 
companion’. The word association thus has a much broader meaning than that in mathematics, key to 
creating a comprehensive model of the psychodynamics of society. For it denotes the fact that all beings 
in the Universe are interconnected, as encapsulated in Integral Relational Logic, the system of thought we 
all implicitly use every day to bring a modicum of order to our lives. Of particular relevance is that 
association is a basic construct in the Unified Modeling Language (UML), playing a key role in 
modelling information systems in business, as mentioned in Chapter 1. 

So the algebraic, combinatorial, and topological meaning of association represents a special, rather 
technical instance, of a universal principle. As already mentioned, Tamari and Stasheff independently 
discovered the associahedron when studying Catalan lattices and homotopic structures, respectively, 
homotopy being the continuous deformation between two continuous maps, such as the transformation 
of a coffee cup with a handle into a doughnut or torus, which are topologically equivalent and 
homeomorphic.598 Although Tamari visualized the potential of higher dimensions, saying in his thesis: 
“Généralement, on aura des hyperpolyèdres” (Generally, we shall have hyperpolyhedra),599 it seems that it was 
Stasheff who first articulated them, albeit initially as curvilinear polytopes, which are today sometimes 
called Stasheff polytopes.600 

However, as with so many discoveries in mathematics, they were not the first to discover the sequences 
of integers encapsulated in what should be more properly called associatopes, the associahedron being the 
three-dimensional member of the class. In 1870, when generalizing Catalan’s bracketings, as the second of 
four combinatorial problems,601  Ernst Schröder (1841–1902) discovered what are today called super-
Catalan numbers or small Schröder numbers (sn) (OEIS A001003), the large ones being twice the size, 
except the first (Sn), the solution to the first of Schröder’s problems (OEIS A006318). In Advanced 
Combinatorics in 1970, Comtet described what these generalizations mean, giving this recurrence 
equation:602 

(𝑛 + 1)𝑠"e$ = 3(2𝑛 − 1)𝑠" − (𝑛 − 2)𝑠"E$							𝑛 ≥ 2;					𝑠$ = 𝑠A = 1 
which generates this sequence with offset 1 rather than 0, as in the OEIS. 

n 1 2 3 4 5 6 7 8 9 10 11 12 
sn 1 1 3 11 45 197 903 4279 20793 103049 518859 2646723 
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However, to visualize the large and small Schröder numbers and their relationships to each other, it is 
easier to view Schröder paths as a generalization of Dyck paths, of which an example is presented on page 
214. In the way that they are depicted there, Dyck paths of semilength n are defined as those with 
diagonal steps (1, 1) and (1, -1) from (0, 0) to (2n, 0) that do not fall below the x-axis. The Schröder 
paths add a horizontal step (2, 0), the small Schröder paths not including any steps on the x-axis. Here 
are diagrams of Schröder paths enumerated as Catalan, super-Catalan, and Schröder numbers for n = 3. 

C3 = 5                      

s3 = C3 + 5                      

+ 1 = 11  

S3 = s3 + 5                      

+ 5                      

+ 1 = 22  
Interestingly, there is a recursive equation that simply illustrates the relationship between the small and 

large Schröder numbers. It arises from an extension of Pascal’s triangle arranged in columns of sequences 
of simplexes, such as the triangular and tetrahedral numbers on page 198. In this triangle (OEIS 
A033877), each cell after the first column of ones is the sum of all three cells above and to its left, not just 
the sum of the cells above it, as in Pascal’s triangle. Then, the main diagonal is the large Schröder 
numbers, while the sum of each row is the small Schröder numbers, offset by one position.603 

n\k 0 1 2 3 4 5 6 7 8 9 10 Σ 
0 1           1 
1 1 2          3 
2 1 4 6         11 
3 1 6 16 22        45 
4 1 8 30 68 90       197 
5 1 10 48 146 304 394      903 
6 1 12 70 264 714 1412 1806     4279 
7 1 14 96 430 1408 3534 6752 8558    20793 
8 1 16 126 652 2490 7432 17718 33028 41586   103049 
9 1 18 160 938 4080 14002 39152 89898 164512 206098  518859 

10 1 20 198 1296 6314 24396 77550 206600 461010 831620 1037718 2646723 

The recurrence equation that generates this triangle is 
𝑇(𝑛, 𝑘) = 𝑇(𝑛, 𝑘 − 1) + 𝑇(𝑛 − 1, 𝑘 − 1) + 𝑇(𝑛 − 1, 𝑘)						𝑇(1, 𝑘) = 	1,			𝑇(𝑛, 𝑘) = 	0, 𝑘 > 𝑛 

giving 
𝑇(𝑛, 𝑛) = 𝑆" 

and 

:𝑇(𝑛, 𝑘) = 𝑠"e$

"

c=d
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Nor is this all. There is some circumstantial evidence that Hipparchus of Nicaea (c. 190–c. 120 BCE) 
was aware of the Schröder sequence, for Plutarch wrote this in De Stoicorum repugnantiis ‘On Stoic self-
contradictions’, the fourth of six essays on Stoic philosophy:604  

But now he [Chrysippus] says himself that the number of conjunctions produced by means of ten propositions exceeds 
a million, though he had neither investigated the matter carefully by himself nor sought out the truth with the help of 
experts. … Chrysippus is refuted by all the arithmeticians, among them Hipparchus himself who proves that his error in 
calculation is enormous if in fact affirmation gives 103,049 conjoined propositions and negation 310,952. 
This Plutarchean passage is repeated almost verbatim in Quaestiones Conviviales ‘Table-talk’.605 But, 

where do these numbers come from? Harold Cherniss, the translator of De Stoicorum repugnantiis said 
that if Hipparchus was familiar with the technical terms in Stoic logic, these comparatively large numbers 
must have meant something to him, for he “was celebrated for his industry and accuracy”. Nevertheless, 
when this translation was made in 1976, even any approximation to them remained an unsolved 
mystery.606 Similarly, Thomas Heath, the leading authority on Greek mathematics in the early twentieth 
century, wrote in 1921, “it seems impossible to make anything of these figures.”607  

This was the situation until 1994, when David Hough, who only began a career in mathematics in 
1992, “noticed that the mysterious number 103,049 of Plutarch, i.e. the number of compound propositions 
that can be formed from ten simple propositions, is just the tenth Schröder number [s10],” Richard P. 
Stanley told us in 1997, giving the quote from Plutarch’s ‘Table-talk’. But, if this is the case, as the 
number 103,049 “is much too large to have been computed by a direct enumeration of all the cases”, he 
must have used a simple recurrence relationship, far simpler that Comtet’s sophisticated recurrence 
equation.608 

However, this does not explain where 310,952 comes from. In the following year, Laurent Habsieger, 
Maxim Kazarian, and Sergei K. Lando proposed a possible solution to this problem. They suggested that 
310,952 was a ‘misprint’ for 310,954, for609 

𝑠$d + 𝑠$$
2 =

103,049 + 518,859
2 = 310,954 

How this number enumerates combinations of negative propositions is far from clear to me. 
Nevertheless, the possibility that Hipparchus had found a way of calculating at least 103,049 led Fabio 
Acerbi to reappraise ancient Greek combinatorics. In a scholarly paper titled ‘On the Shoulders of 
Hipparchus’ in 2003, he said that the evidence that he had discovered supports at least the plausibility of 
the assumption that Hipparchus had grasped the recursive character of the calculations, as the basis of 
combinatorial techniques.610 

However, Susanne Bobzien, a leading authority on Stoic logic, says that while she does not doubt 
Acerbi’s assessment of Hipparchus’s arithmetical skills, she doubts that Hipparchus really understood 
Stoic logic. In another scholarly paper in 2012 titled ‘The Combinatorics of Stoic Conjunction: 
Hipparchus refuted, Chrysippus vindicated’, she says that Chrysippus of Soli (c. 279–c. 206 BCE) , as the 
third head of the Stoa and one of the two greatest logicians in antiquity, “not only got his Stoic logic right 
(which would not be that surprising), but also got his mathematics right; in other words, that, within the 
context of Stoic logic, ‘the number of conjunctions [constructible] from ten assertibles exceeds one 
million’.”611 

An ‘assertible’ here corresponds to what we would call propositions or axioms today, Plutarch’s 
statement being a reference to an attempt to enumerate the many different relationships or associations 
between them. However, far from clarifying the situation, there still seems to be much confusion in 
mathematical circles about the association of the Greeks to these numbers. For instance, while Eric W. 
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Weisstein refers to 103,049 and 310,952 as ‘Plutarch numbers’ on his MathWorld site,612 Wikipedia refers to 
the super-Catalan sequence as Schröder–Hipparchus numbers.613 Yet, how much did the ancient Greeks 
really know about combinatorics? While they had some understanding of triangular numbers, I have seen 
no evidence that they were aware of Pascal’s triangle, related to the triangle that generates the Schröder 
numbers. As the connection of Hipparchus to Schröder is tenuous, at best, I prefer to refer to the small 
Schröder numbers as the super-Catalan sequence, simplifying large Schröder numbers as Schröder 
numbers. 

Besides, debating the relationship between logic and mathematics, as the ancient Greeks saw it, is not 
a subject that I wish to engage in for not only is it beyond my ability to do so, their logical assumptions 
have led Western reasoning into an evolutionary dead end, from which Integral Relational Logic has 
extricated the author of this book, at least. This has happened because I am more focused on meaning 
than on counting, revealing the Contextual Foundation of the Universe, necessary to build a 
comprehensive model of all evolutionary processes and hence explain what causes mathematicians and 
others to be creative. 

Schröder was also much concerned with the foundations, a subject that few mathematicians study, 
even today. He was a logician, seeking the patterns that underlie human reasoning and hence the 
Universe. As such, he was naturally attracted to those mathematicians working outside the mainstream, 
producing such theories as Grassmann’s Calculus of Extension and Cantor’s set theory, and those of 
Charles Sanders Peirce and his students in developing the logic of relatives and first-order predicate logic.  

Geraldine Brady highlights Schröder’s role in the development of mathematical logic in her 1996 
Ph.D. thesis ‘The Contributions of Peirce, Schröder, Löwenheim, and Skolem to the Development of 
First-Order Logic’, later expanded as a book From Peirce to Skolem: A Neglected Chapter in the History of 
Logic. As she points out, Peirce and Schröder’s contribution in these developments has been neglected in 
favour of Frege’s better-known Begriffsschrift ‘concept writing’, with its rather obscure notation, never 
further developed. 

While I haven’t read Schröder’s Über die formalen Elemente der absoluten Algebra (On the Formal 
Elements of the Absolute Algebra) from 1874, Der Operationskreis des Logikkalkuls (The Operation of the 
Logical Calculus) from 1877, in which he emphasized the principle of duality in Boolean algebra, or his 3-
volume masterwork Vorlesungen über die Algebra der Logik (Lectures on the Algebra of Logic), from 1890–
1905,614 not the least because they are in German, it is clear that he was way ahead of his time, not able to 
fulfil his great ambition because direct-access storage devices attached to computers, which led Ted Codd 
to develop his relational model of data, were not invented until the 1950s. 

In turn, this led to Integral Relational Logic, which everyone, including logicians, have implicitly 
applied throughout the history of learning, showing the close connection of this universal system of 
thought to abstract algebra, combinatorics, and topology, for instance, for they all reveal that the 
underlying structure of the Universe is a multidimensional network of hierarchical relationships.  

It is also interesting to note that in 1871, the year after Schröder wrote his paper on combinatorics, he 
wrote ‘Über iterierte Funktionen’ (About Iterated Functions),615 which is often cited as a basis of modern 
dynamical systems theory.616 Indeed, as my book Through Evolution’s Accumulation Point: Towards Its 
Glorious Culmination from 2016 describes, it is possible to use a nonlinear difference equation in systems 
dynamics to map the whole of evolution since the most recent big bang, explaining why society is 
degenerating into chaos at the moment, essentially because most focus on particulars, in contrast to 
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universals, which enable us to fulfil our potential as universal humans, in contrast to Alan Turing’s 
universal machines. 

 
With this rather long preamble, we now come to the associatopic sequences themselves, which are 

somewhat more complex than those for the regular convex polyhedra. For while the initial seed is just a 
point, like that for simplexes and hypercubes, the generating sequence of vertices in the zero dimension is 
that of the Catalan numbers, with their intricate patterns manifesting in many different ways. 

Combinatorially, another way of looking at this generative process is as a generalization of Euler’s 
original question on the subject: into how many regions can a polygon be divided with non-crossing 
diagonals, where the regions are not just triangles? Here are diagrams of the number of ways in which the 
triangle, square, and pentagon can be segmented with non-crossing diagonals, including none, the third 
corresponding to the Dyck paths and first set of Schröder paths above. 

               
1 2 + 1 = 3 5 + 5 + 1 = 11 

Dividing the hexagon into regions is a little more complicated, for the number of different patterns, 
counting rotational and reflective symmetries as the same, is different for each number of diagonals, 
illustrated in these diagrams: 

    
6 + 6 + 2 = 14 12 + 6 + 3 = 21 6 + 3 = 9 1 

14 + 21 + 9 + 1 = 45 
As you can see from the rapid increase of the super-Catalan numbers, the complexity of these patterns 

increases swiftly as the polygons gain sides, making it virtually impossible to draw all of them. 
Nevertheless, enumerating regions created from non-crossing diagonals in polygons is the primary 
interpretation of these sequences in the OEIS. 

Topologically, figures for the two 
dimensions after the initial zero-dimensional 
point are given on page 217 and that for the 
Tamari lattice of order four (T4) on page 218. 
To visualize this as a three-dimensional 
associahedron (K5) with edges and faces, 
denoting generalized parentheses, Wikipedia 
presents these two diagrams. 617  Here, the 
parentheses have been replaced by ovals and 
the distinct letter symbols, which have no 
meaning in this context, by bullets. On the 
left, the 21 connections between the 14 initial 

nodes are marked with two rather than three sets of ovals, indicating what is common to the two vertices 
that they connect. Then, on the right, the ovals on the nine faces are reduced to one, denoting what they 
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share with their three vertices. The entire associahedron is then denoted by the set of five elements with 
no parentheses, indicating the uniqueness of all fourteen vertices, with nothing in common. 

Extending this associatope into multi-dimensional polytopes, like the three regular polytopes, here is a 
table of the number of k-units in each associatope, with their final column being the super-Catalan 
sequence, denoting the total number of elements in each associatope. There is some difficulty with 
indexing here. The first Catalan number C1 corresponds to the zeroth dimension. So, unless we include a 
dimension of -1, C0 is omitted as a generator. And neither of the ways of indexing the super-Catalan 
numbers (with offset 0 or 1) aligns with the number of dimensions of the associatopes. Jean-Louis Loday, 
a specialist in associatopes, tells us that they are often indexed as Kn+2 because “the set of vertices is in one-
to-one correspondence with the planar binary trees having n + 2 leaves,”618 another interpretation of 
Catalan numbers. 

n Kn+2\Nk N0 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10 Σ	
0 K2 1           1 
1 K3 2 1          3 
2 K4 5 5 1         11 
3 K5 14 21 9 1        45 
4 K6 42 84 56 14 1       197 
5 K7 132 330 300 120 20 1      903 
6 K8 429 1287 1485 825 225 27 1     4279 
7 K9 1430 5005 7007 5005 1925 385 35 1    20793 
8 K10 4862 19448 32032 28028 14014 4004 616 44 1   103049 
9 K11 16796 75582 143208 148512 91728 34398 7644 936 54 1  518859 

10 K12 58786 293930 629850 755820 556920 259896 76440 13650 1365 65 1 2646723 
Number of k-units in each n-associatope 

This triangle T(n, k) is A126216 in the OEIS, but with rows at offset 1, defined as “the number of 
Schröder paths of semilength n containing exactly k peaks but no peaks at level one (n ≥ 1; 0 ≤ k ≤ n - 1)”. 
However, as the generating sequence of vertices is the Catalan numbers, there are many other ways in 
which to visualize this lower triangular matrix. One is that each column, denoting edges, faces, and cells, 
etc., counts the number of ways in which convex (n + 3)-gons can be divided with non-crossing diagonals 
into n + 1 - k regions.  

The mirror image of the associatopic triangle, where the rows are reversed, is A033282 in the OEIS, 
thus defined as “Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon 
into k + 1 regions.” This does not directly represent the dual of associatopes, where vertices and facets, 
edges and ridges, etc. are interchanged, like in the relationship between orthoplexes and hypercubes. As a 
linear integer sequence, such a triangle would omit the first term in A033282. For the number of vertices 
in the first column of the triaugmented triangular prism, the dual of the associahedron, is 3 × 3 = 9. 

Now, while the recurrence equation for the Catalan numbers is 

𝐶"e$ =
2(2𝑛 + 1)
𝑛 + 2 𝐶"																								𝐶d = 1 

I have not yet found such a recursive relationship for the triangle, as a whole, like those for the regular 
polytopes. However, the OEIS provides this formula for T(n, k), which I’ll denote with A for associatope, 
adjusted for offset 0 rather than 1:  

𝐴(𝑛, 𝑘) =
1

𝑛 + 1
J
𝑛 + 1
𝑘

KJ
2(𝑛 + 1) − 𝑘

𝑛 + 2
K 					0 ≤ 𝑘 ≤ 𝑛 
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Adjusting the offset for the generating function that the OEIS provides gives: 
1 − 2𝑥 − 𝑡𝑥 − √1 − 4𝑥 − 2𝑡𝑥 + 𝑡A𝑥A

2(1 + 𝑡)𝑥A = 1 + (2 + 𝑡)𝑥 + (5 + 5𝑡 + 𝑡A)𝑥A + (14 + 21𝑡 + 9𝑡A + 𝑡B)𝑥B +⋯ 

Like the regular convex polyhedra, setting t = 0 gives the first column, as the Catalan numbers in this 
case, and setting t = 1 gives the super-Catalan numbers, as the sums of each row, without C0 and s0. Here 
is the effect on the generating function of omitting the first term in each sequence: 

Numbers With 0th term Adjusting 0th term 
Catalan 1 − √1 − 4𝑥

2𝑥
= 1 + 𝑥 + 2𝑥A + 5𝑥B + 14𝑥F + ⋯ 

1 − 2𝑥 − √1 − 4𝑥
2𝑥A

= 1 + 2𝑥 + 5𝑥A + 14𝑥B + 42𝑥F + ⋯ 
Super-Catalan  1 + 𝑥 − √1 − 6𝑥 + 𝑥A

4𝑥
= 1 + 𝑥 + 3𝑥A + 11𝑥B + 45𝑥F + ⋯ 

1 − 3𝑥 − √1 − 6𝑥 + 𝑥A

4𝑥A
= 1 + 3𝑥 + 11𝑥A + 45𝑥B + 197𝑥F … 

Setting t greater than 1 naturally generates other sequences, which do not appear to have any special 
significance in this context. Expressing the generating function as a polynomial in t, like those for the 
convex regular polytopes, requires us to find closed-form formulae for the columns Nk, as the coefficients 
of tn. However, this is not so easy, for these are rather complex and do not seem to follow a regular 
pattern. On the other hand, finding the nth term in each column for each k is relatively straightforward, 
for all we need to do is successively set k = 1, 2, 3 … in the function for A(n, k). 

For instance, entry A002054 in the OEIS gives this generating function for the number of edges in 
each associatope, where C is the generating function for the Catalan numbers: 

𝑥𝐶F

2 − 𝐶 					where				𝐶 =
1 − √1 − 4𝑥

2𝑥  

In full, Wolfram Alpha gives: 
(1 − √1 − 4𝑥)F

16	 �2 − 1 − √1− 4𝑥2𝑥 � 𝑥B
= 𝑥 + 5𝑥A + 21𝑥B + 84𝑥F + 330𝑥I + ⋯ 

OEIS A002055, defined as ‘Number of diagonal dissections of a convex n-gon into n - 4 regions’ gives 
this generating function, with its offset adjusted for the faces in associatopes: 

16𝑥A(𝑥 + √1 − 4𝑥)

�√1− 4𝑥 + 1�
A
(1 − 4𝑥)B A⁄

= 𝑥A + 9𝑥B + 56𝑥F + 300𝑥I + 1485𝑥N +⋯ 

In turn, OEIS A002056 gives this generating function for the cells or polyhedra in associatopes, with 
its offset again suitably adjusted: 

10𝑥F − 50𝑥B + 40𝑥A − 11𝑥 + 1
(1 − 4𝑥)I A⁄ + 𝑥 − 1

2𝑥A = 𝑥B + 14𝑥F + 120𝑥I + 825𝑥N + 5005𝑥¦ +⋯ 
As there does not seem to be any obvious pattern in these generating functions, it is perhaps not 

surprising that the OEIS does not provide such a function for the next in the sequence. 
On the other hand, the diagonals, denoting the facets, ridges, peaks, and so on, enumerating the 

diagonal dissections of a convex (n + 3)-gon into 2, 3, and 4, etc. regions, respectively, are somewhat 
simpler. Essentially, this is because setting k = n – 1, n – 2, etc. in A(n, k) frees the sequences from the 
complications of the central binomial coefficients, which are closely related to the Catalan numbers, as we 
have seen. The OEIS entries in this table after the first have different offsets because they are related to 
the dissections of polygons, not to diagonals in the associatopic triangle.  

Elements OEIS nth term Generating function 

Facets A000096 n(n+3)/2 
𝑥(2 − 𝑥)
(1 − 𝑥)B

= 2𝑥 + 5𝑥A + 9𝑥B + 20𝑥F + 27𝑥I + ⋯ 

Ridges A033275 (n-1)n(n+3)(n+4)/12 
𝑥A(5 − 4𝑥 + 𝑥A)

(1 − 𝑥)I
= 5𝑥A + 21𝑥B + 56𝑥F + 120𝑥I + 225𝑥N + ⋯ 
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Elements OEIS nth term Generating function 

Peaks A033276 (n-2)(n-1)n(n+3)(n+4)(n+5)/144 
𝑥B(14 − 14𝑥 + 6𝑥A − 𝑥B)

(1 − 𝑥)¦
= 14𝑥B + 84𝑥F + 300𝑥I + 825𝑥N + 1925𝑥¦ + ⋯ 

 
Turning now to a more topological perspective, algebraic topologists view associatopes somewhat 

differently from combinatorialists. As I am not a specialist in either of these fields, or in any other 
discipline of human learning, for that matter, all I can do here is mention the little that I have discovered 
so far. In ‘The Multiple Facets of the Associahedron’, Jean-Louis Loday says that it is ‘fairly simple’ to 
construct a Kn + 1 from a Kn along the lines of the simplexes or hypercubes, as described above, but 
‘slightly more involved’.619 Well, such a construction method may be fairly simple, but I have not yet 
understood the complications involved. 

To illustrate the challenge of understanding the higher dimensional associatopes, here are diagrams of 
a three-dimensional wire-frame model of K6 in four dimensions and of the Tamari lattice T5, which 
Robert Dickau created with Mathematica and presented as a Wolfram Demonstrations Project.620 I don’t 
think the wire frame is a Schlegel model, viewing the associachoron through one face, a 3D printed 
version of which is available from shapeways.com.621 The sequence of heptagonal triangularizations has a 
bijective correspondence to the ordering of Dyck paths, viewed as binary numbers (OEIS A063171), 
which Antti Karttunen presents in a software-generated pdf file.622 Hence, paths through the lattice can 
also be traced with Tamari’s encoding of the vertices and in the decimals corresponding to the binary 
ordering (OEIS A014486). 

  
What I know from the associatopic triangle above is that these figures have 42 vertices, 84 edges, 56 

polygons, and 14 polyhedra, as cells or facets of the associachoron. But, how many polygons are squares 
and pentagons? Well, the wire frame seems to suggest that these are the only types of polygon in K6. But, 
how many of each? Well, on the assumption that the polygons are all either squares or pentagons, a 
simple calculation shows their distribution in the first several associatopes is listed in this table: 

Polygon\Kn OEIS K4 K5 K6 K7 K8 K9 K10 K11 K12 
Pentagons A002694 1 6 28 120 495 2002 8008 31824 125970 
Squares A074922 0 3 28 180 990 5005 24024 111384 503880 
Total A002055 1 9 56 300 1485 7007 32032 143208 629850 

What this table indicates is that the polyhedral cells in K6 are not all K5. We can also see this from the 
wire-frame, which shows squares sharing edges with squares, edges that do not exist in the associahedron. 
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I did explore this a little further, and found that fourteen vertices at the beginning and end of the lattice 
do form 9-face, 21-edge associahedra, which are connected directly to each other by two squares. 
However, how the remaining fourteen vertices in the associachoron are connected through the remaining 
ten edges in both of these associahedra and to each other, thus forming twelve more polyhedra with 
unknown numbers of vertices, edges, and faces, is far from clear. No doubt it would be possible to 
investigate further, but I have neither the patience nor the mathematical or programming skills to do so. 

Rather, we can simply make a connection with the combinatorics through the sequences in the OEIS. 
The number of pentagons in each associatope is given by the third factor in A(n, k), for k = 2 and  
n = n - 1:  

J
2(𝑛 − 1)
𝑛 + 1

K 
So the number of squares in n-dimensional associatopes, for n ≥ 2, is: 

1
𝑛 + 1

J
𝑛 + 1
2

KJ
2𝑛
𝑛 + 2

K −	�
2(𝑛 − 1)
𝑛 + 1 � =

𝑛 − 3
2 �

2(𝑛 − 1)
𝑛 − 3 � 

There are two other interesting features of associatopes that I could come back to at another time. 
First, as the Narayana numbers enumerate the peaks in Dyck paths, as mentioned on page 214, and as the 
Schröder paths either flatten the peaks or chop them off, there is a relationship between associatopes and 
the Narayana numbers, which I don’t yet understand. Secondly, associatopes can be formed, together 
with strange beasts called cyclohedra or cyclotopes, by removing facets from permutatopes.623 Perhaps I 
could gain a little insight into what this means by exploring how hexagons appear to generate 
permutatopes in higher dimensions. 

 
The word permutatope derives from permutation, from Latin permūtātio(n-) ‘a complete change’, from 

permūtāre ‘change thoroughly’, from per- ‘thoroughly’ and mūtāre ‘to change’. This is different from the 
conventional term permutohedron, from French permutoèdre, which Georges-Théodule Guilbaud (1912–
2008) and Pierre Rosenstiehl coined in 1963, saying ‘le mot permutoèdre est barbare, mais il est facile à 
retenir; soumettons-le aux critiques des lecteurs,” “the word permutohedron is barbaric, but it is easy to 
remember; let’s submit it to readers’ criticism.”624 

Well, permutohedron seems unsuitable on two counts. First, the suffix -hedron refers to 3-dimensional 
polytopes, so it is misleading to extend words with this suffix into higher dimensions, as has also been 
done with associahedron. A suffix -tope is more appropriate. Secondly, the root of the prefix is permūtātio. 
So why change -a- to -o-, the conventional infix for Greek words? After all, we already have tetrahedron 
and icosahedron, for instance, not tetrohedron and icosohedron. 

However, Günter M. Ziegler says that permutatopes were first studied as far back as 1911,625 when 
Pieter Hendrik Schoute analytically extended uniform polyhedra into higher dimensions626 with the 
assistance of Alicia Boole Stott’s geometric treatment from the previous year. 627  Using a more 
conventional mathematical approach, Schoute explained how she had shown how the uniform polyhedra 
in any number of dimensions could be expanded by a systematic method from the regular polytopes, 
including the truncated octahedron, which is the form of a permutahedron in three dimensions. 

However, permutatopes are not ordered in terms of their dimensions, for the vertices of 
permutahedron, for instance, mark all permutations of four characters. So, permutatopes are more readily 
seen as hyperplanes of a one-higher dimensional space, where sets of vertices, numbered as permutations 
of (1), (1, 2), (1, 2, 3), etc., denote coordinates in Euclidean geometry, in relationship to the origin. Here 
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then are diagrams of the first three orders of permutatopes, corresponding to α0,	 	α1, and  α2,  and γ0, γ1, 
and γ2, for the simplexes and hypercubes, respectively.  

 

   
P1 P2 P3 

However, extending hexagons, rather than triangles and 
squares, into higher dimensions is a little more complicated. 
Thankfully, it is somewhat simpler than the growth of pentagons 
in associatopes because there is a higher degree of symmetry, 
generating uniform polytopes. They are based on the symmetric 
group Sn, which encompasses all groups of order n, as we see in 
the next chapter on ‘Universal Algebra’. As the number of ways 
of permuting n elements is n!, the number of vertices in Pn is n 
times the number in Pn-1. 

Here is a Wikipedia model of P4, showing the hexagon in P3 
in the top-left, behind the front faces, with a fourth element 
added in the first position. The edges represent the relationships 
between permutations where just two positions are swapped. The legend in the bottom right-hand corner 
indicates that there are six ways of doing this in the permatahedron, suitably coloured in the diagram. 
The six squares and eight hexagons thus represent 4- and 6-cycles of permutations, with two and three 

pairs of transitions. However, these are not the only possible 
cycles in pentagonal faces. Cycles exist where only adjacent 
elements are swapped, as this second diagram from Wikipedia 
illustrates, corresponding to a Cayley graph of the symmetric 
group S4. 

Moving into higher dimensions, labelled graphs of vertices 
and edges become difficult to decipher, as diagrams on 
hexnet.org 628  and Wikipedia illustrate. 629  So, it is easier to 
visualize the permutachoron as a 3-dimensional projection using 
3D printing, available from shapeways.com to purchase. As the 
next best thing, this model can also be explored from various 
angles interactively on the Shapeways website, as can the 

associachoron. 630  Here is a screenshot of their model, together with a Schlegel diagram for the 
permutohedron, coloured as a Cayley graph, as P4 and P5: 
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Another name for the permutachoron is an omnitruncated 5-cell and for Pn for n > 5 the conventional 

names are omnitruncated (n - 1)-simplexes. To understand how permutatopes grow indefinitely, we need 
to understand how P3 and P4 are formed from triangles and tetrahedra, as 2- and 3-simplexes. What 
‘omnitruncated’ refers to here is a two-step process, not just simple truncation, which is a secondary step. 
The first involves a more drastic truncation, called rectification, which is the process of marking the 
midpoints of all a polytope’s edges, and cutting off its vertices at those points. 

For instance, the rectified cube and octahedron is the cuboctahedron, which is the polyhedron at the 
centre of the compound of these polyhedra, as duals of each other. In the 
case of a tetrahedron, which is self-dual, the result of rectification is the 
octahedron, at the centre of what Kepler called the stella octangular. It is 
this rectified tetrahedron that is then truncated to form the truncated 
octahedron, as the omnitruncated 3-simplex or permutahedron. In 
extended Schläfli notation, P4 is denoted as tr{3,3}. It is even possible to 
form a hexagon, as P3 or tr{3}, from a triangle, as this diagram illustrates. 
In general, Pn is a tr{3,3,…3,3}, with (n – 2) 3’s. 

One fascinating feature of permutatopes is that they tessellate the space in which they live as 
honeycombs, filling it entirely. This characteristic is illustrated for hexagons and truncated octahedra on 
page 195. However, it holds for any number of dimensions because of the way that permutatopes are 
formed with vertices at all permutations of a tuple (x1, x2, x3, … xn) in modular arithmetic, as Wikipedia 
explains quite well.631 

 
Now, as the generating column of vertices is (n + 1)!, starting from a single point, and as the Stirling 

numbers are concerned with permutations, the number of each type of element in permutatopes is found 
by multiplying the mirror of the Stirling numbers of the second kind, listed on page 230, (OEIS 
A008278)—adjusted to offset 0, to include zero-dimensional polytopes—by the factorials of the reverse 
dimensions (k) in each n-permutatope, giving: 

𝑃(𝑛, 𝑘) = (𝑛 − 𝑘 + 1)! 𝑆(𝑛 + 1, 𝑛 − 𝑘 + 1)									0 ≤ 𝑘 ≤ 𝑛 
From this function, we can generate a table of elements in each permutatope, as follows, where the 

sum of each row is known as ‘ordered-Bell numbers’, which Comtet also called ‘Fubini numbers’, from 
the discrete analogue of a theorem for multiple integrals that Guido Fubini (1879–1943) had developed.632 
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n\Nk N0 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10 Σ	
0 1           1 

1 2 1          3 

2 6 6 1         13 

3 24 36 14 1        75 

4 120 240 150 30 1       541 

5 720 1800 1560     540    62    1      4683 

6 5040 15120 16800     8400    1806    126   1     47293 

7 40320 141120 191520    126000    40824   5796   254   1    545835 

8 362880 1451520 2328480   1905120   834120   186480   18150  510  1   7087261 

9 3628800 16329600 30240000  29635200  16435440  5103000  818520  55980  1022  1  102247563 

10 39916800 199584000 419126400 479001600 322494480 129230640 29607600 3498000 171006 2046 1 1622632573 

Number of k-units in each n-permutatope 
This permutatopic lower triangular matrix is A090582 in the OEIS, but indirectly related to 

probabilities, not labelled as the elements in permutatopes. Rather, what is of interest here is how many 
hexagons and squares there are in each permutatope. As there are (n - 1) faces at each edge (E) and as the 
total number of faces (F) is given by the P(n, k) function, we can calculate the number of hexagons (H), as 
we did for pentagons in associatopes, as: 

𝐻 =
1
2 (
(𝑛 − 1)𝐸 − 4𝐹)				𝑛 > 1 

Hence, the number of squares (S) in each permutatope is: 
𝑆 = 𝐹 −𝐻 

These formulae generate two sequences, like those for pentagons and squares in associatopes, and their 
sum, as the number of polygons in each permutatope. 

Polygon\Pn OEIS P3 P4 P5 P6 P7 P8 P9 P10 P11 
Hexagons A005990 1 8 60 480 4200 40320 423360 4838400 59875200 
Squares A317487 0 6 90 1080 12600 151200 1905120 25401600 359251200 
Total A037960 1 14 150 1560 16800 191520 2328480 30240000 419126400 

There is no need to stop here, as we need to do for associatopes, for the edge lengths of permutatopes 
are all equal to √2, generating uniform polytopes and their constituents. For instance, the first person to 
explore P5, as the permutachoron, seems to have been Alicia Boole Stott’s brother-in-law C. Howard 
Hinton in his book The Fourth Dimension in 1904.633 So, Coxeter called the omnitruncated 5-cell Hinton’s 
polytope, forming a uniform honeycomb, as Hinton’s honeycomb. Here, just as hexagons do not provide 
all the facets of the permutahedron, truncated octahedra do not occupy all the facets or cells of the 
permutachoron. There are just ten of them, with the other twenty uniform polyhedra being hexagonal 
prisms.634 

Moving to the next dimension, the omnitruncated 5-simplex, as a P6, has 360 P4’s, 90 hexagonal 
prisms, and 90 cubes, as cells or ridges, giving 540 in total. Its 62 facets consist of 12 P5’s, 30 truncated 
octahedral prisms, and 20 6-6 duoprisms, 635  all uniform polychora. Clearly, the k-units of higher 
dimensional permutatopes form many different constructs, which do not need to concern us further. 

 
Perhaps the only remaining task is to explore the combinatorics a little. First, Tom Copeland, a regular 

contributor to the OEIS, gives this exponential generating function for all the elements in permutatopes: 
1

1 + 1 − 𝑒
Øp

𝑡
=

𝑡
1 + 𝑡 − 𝑒Øp = 1 + 𝑥 +

1
2!
(2 + 𝑡)𝑥A +

1
3!
(6 + 6𝑡 + 𝑡A)𝑥B +

1
4!
(24 + 36𝑡 + 14𝑡A + 𝑡B)𝑥F + ⋯ 
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However, the egf generates a term for dimension -1 at the beginning, with the coefficients of tn 
enumerating the elements in Pn, not with n denoting dimension. The egf for the Fubini or ordered-Bell 
numbers (OEIS A000670) is even simpler, found by setting t = 1, again with a redundant term at the 
beginning: 

1
2 − 𝑒Ø = 1 + 𝑥 +

3𝑥A

2! +
13𝑥B

3! +
75𝑥F

4! +⋯ 

The individual columns, counting vertices, edges, faces, and cells, etc., seem to have few combinatorial 
interpretations. First, the generating function for the vertices—as the sum of the Stirling numbers of the 
first kind (OEIS A000142)—is the most basic of all, but viewed as an exponential generating function, 
where the factorials in the denominators are ignored, not as an ordinary one. 

1
1 − 𝑥 =

1
0! +

𝑥
1! +

2𝑥A

2! +
6𝑥B

3! +
24𝑥F

4! +⋯ 

Edges in permutatopes are best known combinatorially as unsigned Lah numbers L(n, 2), defined on 
page 232, also related to the Eulerian numbers on page 236, as OEIS A001286, whose nth term is: 

(𝑛 − 1)𝑛!/2 
It has this exponential generating function:636 

2𝑥 + 1
(1 − 𝑥)F = 1 + 6𝑥 + 18𝑥A + 40𝑥B + 75𝑥F … =

1
0! +

6𝑥
1! +

36𝑥A

2! +
240𝑥B

3! +
1800𝑥F

4! + ⋯ 

After this, the number of higher dimensional elements in permutatopes expands even faster than the 
columns in the lower triangular matrix of the Lah numbers. However, they don’t have the simple, 
repeating pattern that we see in the columns of the Lah numbers on page 253. For here are the relevant 
formulae for the faces and cells. 

As already mentioned, the number of faces in permutatopes is OEIS A037960, with this nth term: 
1
24𝑛

(3𝑛 + 1)(𝑛 + 2)! 

It has this exponential generating function: 
𝑥(1 + 2𝑥)
(1 − 𝑥)I = 𝑥 + 7𝑥A + 25𝑥B + 65𝑥F + 140𝑥I … =

𝑥
1! +

14𝑥A

2! +
150𝑥B

3! +
1560𝑥F

4! +
16800𝑥I

5! +⋯ 

In turn, the number of polyhedral cells in permutatopes is OEIS A037961, with this nth term: 
1
48𝑛

A(𝑛 + 1)(𝑛 + 3)! 

It has this exponential generating function: 
𝑥(6𝑥A + 8𝑥 + 1)

(1 − 𝑥)¦ = 𝑥 + 15𝑥A + 90𝑥B + 350𝑥F + 1050𝑥I … =
𝑥
1! +

30𝑥A

2! +
540𝑥B

3! +
8400𝑥F

4! +
126000𝑥I

5! +⋯ 

Although it is not easy to see a pattern in these functions, looking at the diagonals, as P(n, n - j),  with 
j > 0, a pattern does appear, as we see in this table. 

Elements OEIS nth term EGF 

Facets A000918 2"e$ − 2 (𝑒Ø − 1)A =
𝑥A

2! +
6𝑥B

3! +
14𝑥F

4! +
62𝑥I

5! +
126𝑥N

6! +⋯ 

Ridges A001117 3"eA − 3 ∙ 2"eA + 3 (𝑒Ø − 1)B =
𝑥B

3! +
24𝑥F

4! +
240𝑥I

5! +
1560𝑥N

6! +
8400𝑥¦

7! +⋯ 

Peaks A000919 4"eB − 4 ∙ 3"eB + 6 ∙ 3"eB − 4 (𝑒Ø − 1)F =
𝑥F

4! +
120𝑥I

5! +
1800𝑥N

6! +
16800𝑥¦

7! +
126000𝑥S

8! + ⋯ 

Hyperspheres 
Finally, in this chapter, we look briefly at the way that circles and spheres can grow into higher 
dimensions, although I am not being rigorous with the mathematical terminology here. Strictly speaking, 
circles and spheres are 1- and 2-dimensional objects enclosing 2- and 3-dimensional objects called disks 
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or discs and balls, respectively. It is sometimes important to make this distinction. For instance, on the 
surface of a sphere, the sum of the angles is greater than 2π, and we have moved into non-Euclidean 
geometry. Its dual is hyperbolic geometry, used in Einstein’s general theory of relativity, where the angles 
of triangles total less than 2π. 

But here, I’m just concerned with extending Cartesian geometry into higher dimensions. So just as the 
circle and sphere in 2- and 3-dimensional space are defined as all the points equidistant from a central 
point, as the origin, we can define a hypersphere in four dimensions with this equation: 

𝑟A = 𝑥A + 𝑦A + 𝑧A +𝑤A = 𝑥$A + 𝑥AA + 𝑥BA + 𝑥FA 
This representation of a hypersphere, a word that Duncan Sommerville coined in 1914,637 can clearly be 

extended indefinitely into higher dimensions, with sometimes some counterintuitive, weird results, 
presented in three YouTube videos in 2016 and 2017. First, in the very first video in the PBS Infinite 
Series, which stopped production eighteen months later,638 Kelsey Houston-Edwards gave a presentation 
on the unsolved problems of the optimum way of packing hyperspheres, like oranges in a crate, ending 
with a very strange problem of hyperspheres,639  which Grant Sanderson further explained with his 
brilliant, animated graphics on his 3Blue1Brown channel.640 Then, Matt Parker, well-known as a stand-
up mathematical comedian, further explained the mathematics of this peculiar situation in two 
Numberphile videos,641 also described in his book Things to Make and Do in the Fourth Dimension.642 

 
To look at the counterintuitive way that circles grow in higher 

dimensions, we can simply start by packing four unit-circles into a 
4 × 4 square, as illustrated in this diagram. Then, the question is 
what is the largest circle that can be fitted into the space in the 
middle? Well, as you can see, the distance from the centre of a 
packing disk to the centre of the square is √1A + 1A = √2. So, as the 
radius of the packing disk is 1, the largest circle that can be inscribed 
in the space in the middle has a radius of √2 − 1 ≈ 0.4142.  

If we now regard these four circles as the cross section through 
four spheres and add four more in a 4 × 4 × 4 cube, by adding 
another dimension, the centre of the packing spheres moves further away from the centre of the box, by 

the unit radius of the packing spheres, giving ¬1A + �√2�A = √3. So the maximum size sphere that can be 

fitted in the space in the centre has a radius of √3 − 1. Then, moving into four dimensions, the maximum 
radius of the inscribed hypersphere, more properly called 

a hyperball, is ¬1A + �√3�A − 1 = √4 − 1 = 1. The size of 
the central hypersphere is the same size as the packing 
hyperspheres! 

In general, as dimensions are added, the distance from 
the centre of the hypercube to the centres of the packing 
hyperspheres becomes √𝑑, and the radius of the largest 
inscribed hypersphere becomes √𝑑 − 1. So, when d = 9, 
the inner radius is 3 - 1 = 2 and the inscribed hypersphere 
fills the entire 49 hypercube, while still touching the 512 
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packing hyperspheres contained within the box, quite astonishing. After this, the inscribed hypersphere 
extends beyond the enclosing hypercube. Above is a diagram of the way that the radii of the internal 
hyperspheres grow, as the segments outside the unit circle, denoting a packing hyperball. The partial sum 
of the internal angles is given by this formula: 

:arctan
1
√𝑑

"

D=$

 

With n = 17, the partial sum is greater than 2π and we are back in the first quadrant. Here, we clearly 
have another divergent infinite series, depicted as a spiral, whose terms get closer and closer to zero, like 
the harmonic series. 

 
In view of the strange way that spheres pack together in higher dimensions, it is not surprising that 

mathematicians have had difficulty in determining optimal hypersphere packing. This was a problem that 
Kepler, my favourite mystical mathematician, pondered in The Six-Cornered 
Snowflake in 1611 in two and three dimensions. After saying that there must 
be a nonmaterial agent that causes bee honeycombs and pomegranates to 
form as they do—as the plant’s ‘soul’ or life-principle—he then considered 
the two ways that pellets could be arranged on the horizontal plane: in square 
or hexagonal packing, which he illustrated thus. Extending this into three 
dimensions, he thought that hexagonal packing would be the best way of 

packing spherical balls of equal size, with each touching twelve others, 643  known as the Kepler 
conjecture,644 illustrated on page 189, as tetrahedral numbers stacked in a pyramid. 

This diagram from Wikipedia helps us to calculate the packing density of 
coins on a table, for instance. In the hexagon, there are six one-third sectors of 
circles plus a complete one, giving three circles in total, with an area of 3π, if 
the radius of each circle is 1. The hexagon consists of six equilateral triangles of 
base 2, giving the total area of 6√3. Thus, the packing density δ2 is: 

δA =
3π
6√3

=
√3π
6 = 0.9069 = 90.69% 

In a similar manner, James Grimes shows in a Numberphile YouTube video 
how a sphere can be cut up to fill a square-rectangular box that can tessellate 
three-dimensional space.645 The volume of a sphere of radius one is 4π/3 and 
the volume of the box is 2 × 2 × √2. So, the packing density δ3 is: 

δB =
4π
3
4√2

=
√2𝜋
6 = 0.7405 = 74.05% 

Sphere packing in such a lattice can be extended into higher dimensions, as 
this table illustrates.646 However, it was not until 1940 that Fejes Tóth proved that 
the hexagonal lattice is the densest of all possible plane packings.647 The three-
dimensional problem, known as ‘cannonball packing’ took until 1998 for Thomas 
C. Hales to prove, eventually accepted in 2017 after an exhaustive computer 
search.648 However, because regular lattice packing is not the only way of packing 
hyperspheres, until 2016 there was no known proof for the optimal non-lattice 
packing in four or more dimensions. 

n δn % 
2 √3π/6 90.69% 
3 √2𝜋/6 74.05% 
4 𝜋A/16 61.69% 
5 √2𝜋A/30 46.53% 
6 √3𝜋B/144 37.29% 
7 𝜋B/105 29.53% 
8 𝜋F/384 8.07% 
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This situation changed when Maryna Viazovska announced a proof that the E8 lattice provides the 
optimal packing in eight-dimensional space. Because the space between packed hyperspheres is constantly 
increasing, a space appears that is large enough to fit in another hypersphere, thereby increasing the 
‘kissing number’, the number of hyperspheres that can touch any such hypersphere. Very shortly 
thereafter, Viazovska and collaborators announced a similar proof that the Leech lattice is optimal in 24 
dimensions.649 

We look further at lattices in the next chapter on ‘Universal Algebra’, as instances of ubiquitous 
graphs, illustrated by Indra’s Net on the front cover of this book, depicting that none of us is ever separate 
from any other being, including the Supreme Being, for an instant. 
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